DUỖNG THANH NGỌC

NGHIÊN CỨU MỘT SỐ BIỆN PHÁP KỸ THUẬT THEO HƯỚNG THÂM CANH LÚA CẢI TIẾN (SRI) TRONG SẢN XUẤT LÚA CHẤT LƯỢNG TẠI TỈNH QUẢNG BÌNH

TÓM TẮT LUẬN ÁN TIÉN SĨ NÔNG NGHIỆP
Chuyên ngành: Khoa học cây trồng

HUẾ, 2017
ĐẠI HỌC HUẾ
TRƯỜNG ĐẠI HỌC NÔNG LÂM

DƯƠNG THANH NGỌC

NGHIÊN CỨU MỘT SỐ BIẾN PHÁP KỸ THUẬT THEO HƯỚNG THÂM CANH LÚA CẢI TIẾN (SRI) TRONG SẢN XUẤT LÚA CHẤT LƯỢNG TẠI TỈNH QUẢNG BÌNH

TÓM TẮT LUẬN ÁN TIỄN SĨ NÔNG NGHIỆP
Chuyên ngành: Khoa học cây trồng
Mã số: 62.62.01.10

NGƯỜI HƯỚNG DẪN KHOA HỌC
1. PGS.TS. HOÀNG THỊ THÁI HÒA
2. PGS.TS. TRẦN THỊ LỆ

HUẾ, 2017
Công trình hoàn thành tại:
Khoa Nông học, Trường Đại học Nông Lâm Huế

Người hướng dẫn khoa học:

1. PGS.TS. HOÀNG THỊ THÁI HÒA
2. PGS.TS. TRẦN THỊ LỆ

Phản biện 1:

Phản biện 2:

Phản biện 3:

Lưỡng án sẽ được bảo vệ tại hội đồng chấm luận án cấp Đại học Huế
hợp tại: .. Đại học Huế
Vào hồi ...h..., ngày... thángnăm 201...

Có thể tìm hiểu luận án tại:
Thư viện quốc gia Việt Nam.
Thư viện Trường Đại học Nông Lâm Huế
MỤC LỤC

MỞ ĐẦU .. 1
1. TÌNH CẤP THIẾT CỦA ĐẾ TÀI ... 1
2. MỤC ĐỊCH VÀ MỤC TIÊU ĐẾ TÀI ... 2
 2.1. Mục đích của đề tài .. 2
 2.2. Mục tiêu của đề tài .. 2
3. Ý NGHĨA KHOA HỌC VÀ THỰC TIỄN ... 2
 3.1. Ý nghĩa khoa học .. 2
 3.2. Ý nghĩa thực tiễn .. 2
4. PHẠM VÍ NỊCH CƯ CỦA ĐẾ TÀI ... 2
5. NHƯNG ĐỒNG GÓP MỚI CỦA LUẬN ĂN .. 3
 CHƯƠNG 1. TỔNG QUAN CÁC VĂN ĐẾ NỊCH CƯ .. 3
 1.1. CƠ SỞ LÝ LUẬN .. 3
 1.1.1. Tổng quan về hệ thống canh lúa cải tiến (SRI) .. 3
 1.1.2. Giống lúa chất lượng ... 4
 1.1.3. Vai trò của mặt đất trong canh tác lúa .. 4
 1.1.4. Vai trò của phân bón đối với lúa ... 4
 1.1.5. Vai trò của nước đối với cây lúa ... 4
 1.1.6. Cơ sở khoa học của áp dụng một số biện pháp kỹ thuật theo hệ thống canh lúa cải tiến (SRI) .. 4
 1.1.7. Phân vùng sinh thái sản xuất lúa theo nguồn nước trái tiêu 4
 1.2. CƠ SỞ THỰC TIỄN CỦA ĐẾ TÀI ... 4
 1.2.1. Tình hình sản xuất lúa và lúa chất lượng tại Việt Nam và tỉnh Quảng Bình 4
 1.2.2. Tình hình sử dụng lương giống gieo cho lúa tại Việt Nam và Quảng Bình 4
 1.2.3. Tình hình sử dụng phân bón cho lúa tại Việt Nam và Quảng Bình 4
 1.2.4. Tình hình sử dụng nước trái cho lúa tại Việt Nam và Quảng Bình 4
 1.2.5. Tình hình áp dụng hệ thống canh lúa cải tiến (SRI) tại Việt Nam và Quảng Bình .. 4
 1.3. CÁC CÔNG TRÌNH NỊCH CƯ TRÊN THẾ GIỚI VÀ VIỆT NAM 4
 1.3.1. Trên thế giới .. 4
 1.3.2. Tại Việt Nam .. 4
 CHƯƠNG 2. ĐỐI TƯỢNG, NỘI DUNG VÀ PHƯƠNG PHÁP NỊCH CƯ .. 5
 2.1. ĐỐI TƯỢNG NỊCH CƯ ... 5
 2.1.1. Đạt thí nghiệm .. 5
 2.1.2. Cây trồng thí nghiệm ... 5
 2.1.3. Phân bón ... 5
 2.2. ĐỊA DIỆM VÀ THỜI GIAN NỊCH CƯ .. 5
 2.2.1. Địa điểm nghiên cứu ... 5
 2.2.2. Thời gian nghiên cứu ... 5
 2.3. NỘI DUNG NỊCH CƯ ... 5
 2.4. PHƯƠNG PHÁP NỊCH CƯ .. 5
 2.4.1. Công thức và bố trí thí nghiệm .. 6
2.4.2. Các chỉ tiêu và phương pháp theo dõi ... 7
2.4.3. Phương pháp xử lý số liệu .. 8
2.5. ĐỊNH KIỂM THÔI TIẾT KHÍ HẠU .. 8
CHƯƠNG 3. KẾT QUẢ NGHIỆN CƯU VÀ THẢO LUẬN .. 8
3.1. ẢNH HƯỞNG CỦA LƯỢNG GIÓNG GIEO ĐẾN HAI GIÓNG LÚA CHẤT LƯỢNG HT1 VÀ P6 THEO HỆ THÔNG THÂM CANH LÚA CẢI TIÊN (SRI) Ở VÙNG CHƯƠNG DỌNG VÀ KHÔNG CHƯƠNG DỌNG NƯỚC TUỔI ... 8
3.1.1. Ảnh hưởng của lượng gióng gieo đến khả năng để nhân và chiều cao cây cuối cùng của hai giống lúa chất lượng HT1 và P6 .. 8
3.1.2. Ảnh hưởng của lượng gióng gieo đến các yếu tố cấu thành năng suất và năng suất của hai giống lúa chất lượng HT1 và P6 .. 9
3.1.3. Ảnh hưởng của lượng gióng gieo đến hiệu quả kinh tế của hai giống lúa chất lượng HT1 và P6 .. 11
3.2. ẢNH HƯỞNG CỦA TÔ HỢP PHÁN BÓN ĐẾN HAI GIÓNG LÚA CHẤT LƯỢNG HT1 VÀ P6 THEO HỆ THÔNG THÂM CANH LÚA CẢI TIÊN (SRI) Ở VÙNG CHƯƠNG ĐỌNG VÀ KHÔNG CHƯƠNG ĐỌNG NƯỚC TUỔI ... 12
3.2.1. Ảnh hưởng của tổ hợp phân bón đến khả năng để nhân và chiều cao cây cuối cùng của hai giống lúa chất lượng HT1 và P6 .. 12
3.2.2. Ảnh hưởng của tổ hợp phân bón đến các yếu tố cấu thành năng suất và năng suất của hai giống lúa chất lượng HT1 và P6 .. 13
3.2.3. Ảnh hưởng của tổ hợp phân bón đến một số tính chất hóa học đất 15
3.2.4. Ảnh hưởng của tổ hợp phân bón đến hiệu quả kinh tế của hai giống lúa chất lượng HT1 và P6 .. 16
3.2.5. Ảnh hưởng của tổ hợp phân bón đến một số chỉ tiêu về phân chất gáo của hai giống lúa chất lượng HT1 và P6 .. 17
3.3. ẢNH HƯỞNG CỦA CHẾ ĐỘ TUỔI NƯỚC ĐẾN HAI GIÓNG LÚA CHẤT LƯỢNG HT1 VÀ P6 THEO HỆ THÔNG THÂM CANH LÚA CẢI TIÊN (SRI) TẠI VÙNG CHƯƠNG ĐỌNG NƯỚC TUỔI .. 18
3.3.1. Ảnh hưởng của chế độ tuổi nước đến các yếu tố cấu thành năng suất và năng suất của hai giống lúa chất lượng HT1 và P6 .. 18
3.3.2. Ảnh hưởng của chế độ tuổi nước đến hiệu quả kinh tế của hai giống lúa chất lượng HT1 và P6 .. 19
3.3.3. Ảnh hưởng của chế độ tuổi nước đến số lần tuổi và tổng lượng nước tuổi của hai giống lúa chất lượng HT1 và P6 .. 19
3.4. KẾT QUẢ XÂY DỰNG MÔ HÌNH SẢN XUẤT LÚA .. 20
3.4.1. Năng suất và các yếu tố cấu thành năng suất ... 20
3.4.2. Hiệu quả kinh tế của mô hình sản xuất ... 20
3.4.3. Phát thải khí CH₄, N₂O ... 20
CHƯƠNG 4. KẾT LUẬN VÀ ĐỀ NGHỊ .. 21
4.1. KẾT LUẬN ... 21
4.2. ĐỀ NGHỊ .. 22
1. TÍNH CẤP THIẾT CỦA ĐỀ TÀI

Lúa là cây lương thực quan trọng, là nguồn cung cấp năng lượng lớn nhất cho con người. Trên thế giới, cây lúa được 250 triệu nông dân trồng, là lương thực chính của 1,3 tỉ người nghèo trên thế giới, sinh kế chủ yếu của nông dân. Việt Nam với dân số trên 90 triệu người, khoảng 60% dân số sống bằng nghề nông và có nền văn minh lúa nước từ lâu đời. Trong đó, trên 80% dân số sống nhờ vào cây lúa. Lúa gạo hiện là cây lương thực chính cung cấp năng lượng và nguồn dinh dưỡng quan trọng trong đời sống hàng ngày [116]. Tại Việt Nam, theo Tổng cục Thống kê (2015), tổng diện tích lúa cả năm 2015 đạt trên 7,8 triệu ha, tăng 18,7 nghìn ha so với năm 2014; năng suất bình quân đạt 57,7 tạ/ha, tăng 0,2 tạ/ha so với năm 2014; sản lượng ước đạt 45,2 triệu tấn thóc, tăng 241 nghìn tấn so với năm 2014 [69].

Hiện nay sản xuất nông nghiệp nói chung và sản xuất lúa nói riêng đang gặp phải nhiều khó khăn, thách thức như hiện tượng thời tiết cực đoan do ảnh hưởng của biến đổi khí hậu, hạn hán, bão, lũ lụt dẫn đến diện tích đất lúa đồng cỏ ngập nước, ráy hài kéo dài, hạn hán, bão, lũ lụt dẫn đến di hiếm dịch hại, thiếu nước tưới, chi phí phân bón, chăm sóc, phòng trừ dịch hại...giảm tăng, hiệu quả kinh tế của sản xuất lúa gạo nói chung và lúa gạo chất lượng cao vẫn chưa đáp ứng mong mỏi của người nông dân.

Tại tỉnh Quảng Bình, lúa là cây trồng chủ đạo trong sản xuất, năm 2016 tỷ trọng sản xuất nông nghiệp của tỉnh chiếm 22,9% trong cơ cấu các ngành kinh tế, trong đó sản xuất lúa đóng góp sản lượng 280.630 tấn, chiếm 91,8% tổng sản lượng lương thực toàn tỉnh (305.635 tấn) [98].

Để tăng năng suất và chất lượng lúa, trong những năm qua, nhiều tiến bộ và giải pháp kỹ thuật trong sản xuất nông nghiệp đã được áp dụng như quản lý dịch hại tổng hợp (IPM), quản lý cây trồng tổng hợp (ICM), “3 giảm - 3 tăng”, “01 phải - 5 giảm” và các nghiên cứu về giống, phân bón, chế độ canh tác đã được triển khai nhằm mục đích nâng cao năng suất, chất lượng trong sản xuất lúa, góp phần gia tăng giá trị hàng hóa lúa gạo trên địa bàn toàn tỉnh.

Hệ thống thâm canh lúa cải tiến (SRI) là tổng hợp các biện pháp thâm canh lúa như cấy mạ non, khoảng cách cấy rộng, điều tiết nước hợp lý. Sự thay đổi một số hoạt động canh tác chủ yếu này tạo nên sự phát huy tiềm năng di truyền vốn có của lúa thực đẩy quá trình sinh trưởng phát triển của cây lúa để tạo năng suất cao, đồng thời tăng hiệu quả sử dụng đất và nước [123].

Hệ thống thâm canh lúa cải tiến (SRI) đã được đưa vào thử nghiệm áp dụng từ vụ đông xuân 2012 - 2013 tại tỉnh Quảng Bình. Kết quả bước đầu cho thấy năng suất lúa tăng cao hơn nền nóng, khoảng cách cấy rộng, điều tiết nước hợp lý. Sự thay đổi một số hoạt động canh tác chủ yếu này tạo nên sự phát huy tiềm năng di truyền vốn có của lúa thực đẩy quá trình sinh trưởng phát triển của cây lúa để tạo năng suất cao, đồng thời tăng hiệu quả sử dụng đất và nước [123].

Hệ thống thâm canh lúa cải tiến (SRI) đã được đưa vào thử nghiệm áp dụng từ vụ đông Xuân 2012 - 2013 tại tỉnh Quảng Bình. Kết quả bước đầu cho thấy năng suất lúa tăng cao hơn nền nóng, khoảng cách cấy rộng, điều tiết nước hợp lý. Sự thay đổi một số hoạt động canh tác chủ yếu này tạo nên sự phát huy tiềm năng di truyền vốn có của lúa thực đẩy quá trình sinh trưởng phát triển của cây lúa để tạo năng suất cao, đồng thời tăng hiệu quả sử dụng đất và nước [123].
tiến góp phần tạo nên sự bền vững cho hệ sinh thái nông nghiệp, tăng phẩm chất nông sản, góp phần xây dựng nền nông nghiệp hữu cơ trong thế kỷ 21 và thích ứng với biến đổi khí hậu.

Tuy nhiên, tại tỉnh Quảng Bình, SRI mới chỉ được khuyến cáo từ quy trình chung và chưa được áp dụng mô hình để nhân rộng đối với lúa cấy, chưa có các nghiên cứu cụ thể cho lúa gieo thẳng và các biện pháp canh tác như: lượng giống gieo, chế độ phân bón, chế độ tưới...theo hướng SRI, nhất là đối với các giống lúa chất lượng để làm rõ ảnh hưởng và sự phù hợp của các biện pháp canh tác hướng SRI. Xuất phát từ những lý do trên, chúng tôi thực hiện đề tài: “Nghiên cứu một số biện pháp kỹ thuật theo hướng thâm canh lúa cải tiến (SRI) trong sản xuất lúa chất lượng tại tỉnh Quảng Bình”

2. MỤC ĐÍCH VÀ MỤC TIÊU ĐỀ TÀI

2.1. Mục đích của đề tài

Xác định được một số biện pháp kỹ thuật phù hợp trong sản xuất lúa chất lượng theo hướng thâm canh lúa cải tiến (SRI) ở tỉnh Quảng Bình nhằm hoàn thiện quy trình kỹ thuật sản xuất lúa để nâng cao năng suất và chất lượng lúa, hiệu quả kinh tế và độ phù hợp.

2.2. Mục tiêu của đề tài

Xác định được lượng giống gieo, tổ hợp phân bón thích hợp cho một số giống lúa chất lượng trên vùng chủ động và không chủ động nước tưới theo hướng SRI nhằm tăng năng suất và chất lượng gạo, tăng hiệu quả kinh tế và cải thiện độ phì đất.

Xác định được chế độ tưới nước phù hợp theo hướng SRI trên vùng chủ động nước tưới nhằm đạt được năng suất và hiệu quả kinh tế cao.

Xây dựng được mô hình sản xuất lúa chất lượng theo hướng SRI trên vùng chủ động và không chủ động nước tưới tại huyện Quảng Ninh và Bố Trạch, tỉnh Quảng Bình.

3. Ý NGHĨA KHOA HỌC VÀ THỰC TIẾN

3.1. Ý nghĩa khoa học

Là cơ sở khoa học cho việc đề xuất biện pháp sử dụng lương giống gieo, phân bón và chế độ tưới nước cho lúa trong quy trình canh tác lúa chất lượng theo hướng hệ thống thâm canh lúa cải tiến (SRI) vừa đảm bảo được năng suất, chất lượng vừa giảm phát thải khí nhà kính tại tỉnh Quảng Bình.

Là tài liệu tham khảo cho các nghiên cứu có điều kiện tương tự tại tỉnh Quảng Bình và các địa phương khác.

3.2. Ý nghĩa thực tiễn

Hoàn thiện quy trình kỹ thuật sản xuất lúa chất lượng theo hướng thâm canh lúa cải tiến (SRI) trên vùng chủ động và không chủ động nước tưới tại tỉnh Quảng Bình.

Khuyến cáo nông dân sử dụng lương giống gieo, phân bón cần đến và hợp lý và chế độ tưới nước phù hợp cho giống lúa chất lượng theo hướng sản xuất an toàn với môi trường sinh thái cho vùng trồng lúa của tỉnh Quảng Bình.

4. PHẠM VI Nghiên cứu của đề tài
Đề tài tập trung nghiên cứu một số biện pháp kỹ thuật bao gồm: lượng giống gieo, tổ hợp phân bón (N, P, K, phân chuồng và phân hữu cơ vi sinh Sông Gianh), chế độ tưới nước cho giống lúa chất lượng trong điều kiện gieo thẳng theo hệ thống thâm canh lúa cải tiến (SRI), làm cơ sở cho xây dựng mô hình sản xuất lúa chất lượng theo hướng SRI.

Các thí nghiệm về lượng giống gieo và phân bón cho giống lúa chất lượng được thực hiện trên đất phù sa không được bồi hàng năm tại vùng chủ động nước tưới ở xã An Ninh, huyện Quảng Ninh và vùng không chủ động nước tưới ở xã Đại Trạch, huyện Bố Trạch. Thí nghiệm chế độ tưới nước được thực hiện tại vùng chủ động nước tưới của xã An Ninh, huyện Quảng Ninh, tỉnh Quảng Bình.

Mô hình sản xuất lúa chất lượng được tiến hành tại vùng chủ động nước tưới ở xã An Ninh, huyện Quảng Ninh và vùng không chủ động nước tưới ở xã Đại Trạch, huyện Bố Trạch, tỉnh Quảng Bình.

5. NHỮNG ĐÓNG GÓP MỚI CỦA LUẬN ÁN

Kết quả nghiên cứu đã xác định được (1) lượng giống gieo phù hợp trên vùng chủ động nước tưới trong vụ đông xuân là 60 kg/ha cho cả hai giống HT1 và P6, 40 kg/ha ở giống HT1 và 60 kg/ha ở giống P6 trong vụ hè thu; (2) lượng giống gieo phù hợp trên vùng không chủ động nước tưới là 60 kg/ha cho cả hai giống HT1 và P6 trong hai vụ đông xuân và hè thu.

Kết quả nghiên cứu đã xác định được tổ hợp phân bón phù hợp cho hai giống lúa HT1 và P6 trên (1) vùng chủ động nước tưới là 80 kg N + 45 kg P2O5 + 60 kg K2O + 500 kg vôi + 01 tấn phân hữu cơ vi sinh Sông Gianh/ha và (2) vùng không chủ động nước tưới là 80 kg N + 45 kg P2O5 + 60 kg K2O + 500 kg vôi + 10 tấn phân chuồng/ha.

Kết quả nghiên cứu đã xác định được chế độ tưới ướt khô xen kẽ là phù hợp nhất cho cây lúa, năng suất đạt 5,63 tấn/ha (giống HT1) - 6,44 tấn/ha (giống P6), hiệu quả kinh tế tăng cao nhất so với đối chứng là 18,75% (giống HT1) và 22,80% (giống P6).

CHƯƠNG 1. TỔNG QUAN CÁC VĂN ĐỀ NGHIỆN CỬ

1.1. CO SỞ LÝ LUẬN

1.1.1. Tổng quan về hệ thống thâm canh lúa cải tiến (SRI)

1.1.1.1. Khái niệm hệ thống thâm canh lúa cải tiến (SRI)

1.1.1.2. Nguyên tắc của hệ thống thâm canh lúa cải tiến (SRI)

1.1.1.2.1. Đối với lúa cấy

1.1.1.2.2. Đối với lúa gieo thẳng

1.1.2.3.Ưu điểm của SRI

1.1.2.3.1. Tác động tích cực đến hệ rễ lúa

1.1.2.3.2. Tăng số nhánh hữu hiệu

1.1.2.3.3. Giảm phát sinh dịch hại trên cây lúa

1.1.2.3.4. Giảm phát thải khí nhà kính, ứng phó với biến đổi khí hậu trong sản xuất nông nghiệp
e. Tiết kiệm nước tưới
f. Thích ứng với điều kiện ngoại cảnh bất lợi và thời tiết cực đoan

1.1.2. Giống lúa chất lượng
1.1.3. Vai trò của mật độ trong canh tác lúa
d. Vai trò của phân bón đối với lúa

1.1.4.1. Nhu cầu dinh dưỡng N, P, K của cây lúa
1.1.4.2. Vai trò của N, P, K đối với cây lúa
1.1.5. Vai trò của nước đối với cây lúa

1.1.5.1. Nhu cầu nước của cây lúa
1.1.5.2. Vai trò của nước đối với cây lúa
1.1.6. Cơ sở khoa học của áp dụng một số biện pháp kỹ thuật theo hệ thống thâm canh lúa cải tiến (SRI)

1.1.7. Phân vùng sinh thái sản xuất lúa theo nguồn nước tưới tiêu

1.2. Cơ sở thực hiện của đề tài
1.2.1. Tình hình sản xuất lúa và lúa chất lượng tại Việt Nam và tỉnh Quảng Bình

1.2.1.1. Tình hình sản xuất lúa và lúa chất lượng tại Việt Nam
1.2.1.2. Tình hình sản xuất lúa và lúa chất lượng tại Quảng Bình
1.2.1.3. Tình hình sản xuất lúa của huyện Quảng Ninh và xã An Ninh
1.2.1.4. Tình hình sản xuất lúa của huyện Bố Trạch và xã Đại Trạch

1.2.2. Tình hình sử dụng lượng giống gieo cho lúa tại Việt Nam và Quảng Bình

1.2.2.1. Tại Việt Nam
1.2.2.2. Tại Quảng Bình

1.2.3. Tình hình sử dụng phân bón cho lúa tại Việt Nam và Quảng Bình

1.2.3.1. Tại Việt Nam
1.2.3.2. Tại Quảng Bình

1.2.4. Tình hình sử dụng nước tưới cho lúa tại Việt Nam và Quảng Bình
1.2.5. Tình hình áp dụng hệ thống thâm canh lúa cải tiến (SRI) tại Việt Nam và Quảng Bình

1.2.5.1. Tại Việt Nam
1.2.5.2. Tại Quảng Bình

1.3. Các công trình nghiên cứu trên thế giới và Việt Nam
1.3.1. Trên thế giới

1.3.1.1. Giống lúa chất lượng
1.3.1.2. Mật độ
1.3.1.3. Phân bón
1.3.1.4. Nước tưới
1.3.2. Tại Việt Nam

1.3.2.1. Giống lúa chất lượng
1.3.2.2. Mật độ
1.3.2.3. Phân bón
1.3.2.4. Nước tưới
CHƯƠNG 2. ĐỐI TƯỢNG, NỘI DUNG VÀ PHƯƠNG PHÁP NGHIÊN CỨU

2.1. ĐỐI TƯỢNG NGHIÊN CỨU

2.1.1. Đất thí nghiệm: Các thí nghiệm được bố trí trên đất sa không được bồi hàng năm (Eutric Fluvisols) chuyển trọng 2 vụ lúa trên hai vùng đất chủ động nước tưới

2.1.2. Cây trồng thí nghiệm: Giống cây trồng được sử dụng trong các thí nghiệm là 02 giống lúa chất lượng HT1 và P6 đang được trồng phổ biến tại địa phương.

2.1.3. Phân bón: Ure (46% N); lân supe (16% P₂O₅); KCl (60% K₂O); Phân hữu cơ sinh Sông Gianh: OM (15%), P₂O₅ hữu hiệu (1,5%), axit humic (2,5%), Ca (1,0%), Mg (0,5%), S (0,3%), các chủng vi sinh vật hữu ích (Bacillus: 1×10⁶ CFU/g, Azotobacter: 1×10⁶ CFU/g, Aspergillus sp: 1×10⁶ CFU/g); Phân chuồng: được sản xuất tại địa phương (C: 29%; N: 0,97%; P₂O₅: 0,39%; K₂O: 0,42%); Vôi bột: với nguyên từ vỏ ốc, vỏ sò hến. Đây là dạng với bón đang được sử dụng phổ biến tại địa phương (50% CaO).

2.2. DIẤM ĐIỂM VÀ THỜI GIAN NGHIÊN CỨU

2.2.1. Địa điểm nghiên cứu

2.3. NỘI DUNG NGHIÊN CỨU

Nội dung 1: Nghiên cứu ảnh hưởng của lượng giống gieo đến hai giống lúa chất lượng HT1 và P6 theo hướng SRI trên đất phù sa không được bồi hàng năm tại vùng chủ động và không chủ động nước tưới.

Nội dung 2: Nghiên cứu ảnh hưởng của tổ hợp phân bón đến hai giống lúa chất lượng HT1 và P6 theo hướng SRI trên đất phù sa không được bồi hàng năm tại vùng chủ động và không chủ động nước tưới.

Nội dung 3: Nghiên cứu ảnh hưởng của chế độ tưới nước đến hai giống lúa chất lượng HT1 và P6 theo hướng SRI trên đất phù sa không được bồi hàng năm tại vùng chủ động nước tưới.

Nội dung 4: Xây dựng mô hình sản xuất lúa chất lượng HT1 và P6 theo hướng SRI trên đất phù sa không được bồi hàng năm tại vùng chủ động và không chủ động nước tưới tại tỉnh Quảng Bình.

2.4. PHƯƠNG PHÁP NGHIÊN CỨU
2.4.1. Công thức và bố trí thí nghiệm

2.4.1.1. Thí nghiệm 1: Ảnh hưởng của lượng giống gieo đến hai giống lúa chất lượng theo hướng SRI trên đất phù sa không được bồi hàng năm tại vùng chủ động và không chủ động nước tưới

Tiến hành thí nghiệm gồm 2 nhân tố (hai giống lúa chất lượng: HT1 và P6 và 4 lượng giống gieo: 20, 40, 60 và 80 kg/ha). Tổng số 8 công thức thí nghiệm. Thí nghiệm được bố trí theo kiểu Split - plot (ô lớn - ô nhỏ) với 08 công thức, 3 lần nhắc lại, trong đó giống lúa (G1, G2) được bố trí vào ô lớn và lượng giống gieo (L1, L2, L3 và L4) được bố trí vào ô nhỏ. Diện tích ô nhỏ là 15 m² và diện tích ô lớn là 60 m². Quy trình kỹ thuật theo hướng dẫn của Sở NN và PPTNT tỉnh Quảng Bình theo hướng SRI. Điều tiết nước: Ở vùng chủ động nước tưới áp dụng biện pháp tưới ướt khô xen kẽ (- 10 cm) được khuyến cáo trong SRI (IRRI, 2009). Ở vùng không chủ động nước tưới, biện pháp thủy triều hoàn toàn phụ thuộc vào nước trời.

2.4.1.2. Thí nghiệm 2: Ảnh hưởng của phân bón cho hai giống lúa chất lượng theo hướng SRI trên đất phù sa không được bồi hàng năm tại vùng chủ động và không chủ động nước tưới.

Tiến hành thí nghiệm gồm 2 nhân tố (hai giống lúa chất lượng và 5 công thức phân bón). Tổng số công thức thí nghiệm là 10. Thí nghiệm được bố trí theo kiểu Split - plot (ô lớn, ô nhỏ) với 10 công thức, 3 lần nhắc lại, trong đó giống lúa (G1, G2) được bố trí vào ô lớn và phân bón (P1, P2, P3, P4, P5) được bố trí vào ô nhỏ. Diện tích ô nhỏ là 15 m² và diện tích ô lớn là 75 m². Các công thức thí nghiệm được đề xuất dựa trên hướng dẫn về lượng và dạng phân bón cho cây lúa theo quy chuẩn kỹ thuật quốc gia về khảo nghiệm gia trĩ canh tác và sử dụng của giống lúa (QCVN 01-55: 2011/BNNPTNT) [15], theo hướng dẫn của Sở Nông nghiệp và Phát triển nông thôn tỉnh Quảng Bình (100 kg N + 60 kg P2O5 + 80 kg K2O + 0,5 tấn phân hữu cơ sông Gianh/ha + 500 kg vôi/ha) và điều tra thực tế về lượng phân bón sử dụng cho lúa chất lượng của nông dân tại điểm nghiên cứu (100 kg N + 60 kg P2O5 + 80 kg K2O/ha). Điều tiết nước tương tự thí nghiệm 1.

2.4.1.3. Thí nghiệm 3: Ảnh hưởng của chế độ tuối nước theo hướng SRI đến giống lúa chất lượng trên đất phù sa không được bồi hàng năm tại vùng chủ động nước tưới

Tiến hành thí nghiệm gồm 2 nhân tố (hai giống lúa chất lượng và 2 chế độ tuổi nước). Cơ sở thiết kế công thức thí nghiệm dựa vào biện pháp tươi của nông dân hiện nay là tuổi ngập thường xuyên (T1), biện pháp tươi ướt khô xen kẽ (T2) được khuyến cáo trong SRI (IRRI, 2009) (T2). Tổng số công thức thí nghiệm là 4. Thí nghiệm được bố trí theo kiểu Split - plot (ô lớn, ô nhỏ) với 4 công thức, 3 lần nhắc lại, trong đó chế độ tuổi nước (T1, T2) được bố trí vào ô lớn và giống (G1, G2) được bố trí vào ô nhỏ. Lượng giống gieo sạ và các biện pháp kỹ thuật áp dụng theo hướng SRI. Lượng phân bón của Sở Nông nghiệp và Phát triển nông thôn tỉnh Quảng Bình (100 kg N + 60 kg P2O5 + 80 kg K2O + 0,5 tấn phân hữu cơ sông Gianh/ha + 500 kg vôi/ha) và điều tra thực tế về lượng phân bón sử dụng cho lúa chất lượng của nông dân tại điểm nghiên cứu (100 kg N + 60 kg P2O5 + 80 kg K2O/ha)

2.4.1.4. Xây dựng mô hình sản xuất lúa
Dựa trên kết quả tốt nhất của 3 thí nghiệm, tiến hành xây dựng mô hình sản xuất lúa chất lượng trên vùng chủ động nước, gồm 2 công thức: CT1 (D/C): 100 kg N + 60 kg P₂O₅ + 80 kg K₂O + 500 kg vôi/ha (lượng bón khuyến cáo theo canh tác thông thường), lượng giống gieo 80 kg/ha và tưới ngày thường xuyên. Giống HT1 (vụ hè thu), giống P6 (vụ đông xuân). CT2 (MH): 80 kg N + 45 kg P₂O₅ + 60 kg K₂O + 500 kg vôi/ha + 01 tấn phân hữu cơ Sông Gianh/ha, lượng giống gieo 40 kg/ha (giống HT1, vụ hè thu), lượng giống gieo 60 kg/ha (giống P6, vụ đông xuân), tưới trong khoảng 10 cm.

* Mô hình sản xuất lúa chất lượng trên vùng không chủ động nước, gồm 2 công thức: CT1 (D/C): 100 kg N + 60 kg P₂O₅ + 80 kg K₂O + 500 kg vôi/ha (lượng bón khuyến cáo theo canh tác thông thường), lượng giống gieo 80 kg/ha (D/C). Giống HT1 (vụ hè thu), giống P6 (vụ đông xuân). CT2 (MH): 80 kg N + 45 kg P₂O₅ + 60 kg K₂O + 500 kg vôi/ha + 10 tấn phân chuồng/ha, lượng giống gieo 60 kg/ha. Giống HT1 (vụ hè thu), giống P6 (vụ đông xuân). Chế độ tưới nước phụ thuộc vào mức độ nước mùa tới.

Quy trình kỹ thuật áp dụng theo hướng SRI và các chỉ tiêu theo dõi được áp dụng theo quy chuẩn kỹ thuật Quốc gia về khảo nghiệm giá trị canh tác và giá trị sử dụng giống lúa, QCVN 01- 55:2011/ BNN&PTNT.

2.4.2. Các chỉ tiêu và phương pháp đo đạc

2.4.2.1. Các chỉ tiêu về sinh trưởng, phát triển của lúa: Thời gian sinh trưởng, phát triển; chiều cao cây cuối cùng; Chỉ tiêu về nhân tặng: Số nhân tặng tối đa, số nhân tặng hiệu; tỷ lệ nhân tặng hiệu. Chỉ tiêu về sự phát triển của bộ rễ: Số rễ; đường kính rễ; tổng chiều dài rễ/cây: Cân khối lượng con m rễ (m1, gam) rồi cân khối lượng toàn bộ rễ của 3 cây lúa (m2, gam). Tổng chiều dài rễ/cây (m) = m2/m1/3. Các chỉ tiêu về năng suất: Các yếu tố cấu thành năng suất, năng suất lý thuyết, năng suất thực thu.

2.4.2.2. Đánh giá và cho điểm tại thời điểm phát sinh gây hại của các đối tượng sâu bệnh hại chính trên lúa bao gồm: Sâu cuốn lá nhỏ (Cnaphadocrosis medinalis Guenee), rầy nâu (Ninaparvata lugens Stal.), bọ trí (Halothrips aculeatus Fabricius), sâu đục thân lúa bướm 2 chum (Scirpophaga incertulas Walk), bệnh khô vằn (Rhizoctonia solani), bệnh đạo ôn (Pyricularia oryzae).

2.4.2.3. Các chỉ tiêu về đất: pHKCl; OC; N tổng số; P₂O₅ tổng số; K₂O tổng số (TCVN 8660-2011).

2.4.2.4. Các chỉ tiêu về chất lượng gạo: theo các TCVN về tỷ lệ gạo lật, lệ gạo nguyên, tỷ lệ gạo xát, hàm lượng protein, đánh giá chất lượng cơm cảm quan.
2.4.2.5. Các chỉ tiêu về hiệu quả kinh tế: lợi nhuận, VCR (Tỷ suất lợi nhuận), tỷ lệ tăng lợi nhuận.

2.4.2.6. Theo dõi và đo khí CH₄ và N₂O

Thu mẫu khí ngoài đồng ruộng bằng phương pháp sử dụng thùng kín từ sau gieo 2 tuần cho đến giai đoạn hình thành hạt chắc của lúa. Dạt 1 thùng lấy khí trong mỗi ô thí nghiệm/1 lần nhắc lại. Thu mẫu khí vào 4 thời điểm STPT của lúa: bắt đầu đẻ nhánh, làm đòng, trổ, chín (chín sữa) vào 4 thời điểm 0, 10, 20, 30 phút sau khi đầy nắp thùng. Thời gian thu thập các mẫu khí là từ 8 - 10 h sáng.

Các chỉ tiêu về khí: Tiến hành thu bằng dụng cụ chuyên dùng. Phân tích khí bằng máy sắc khí (GC) - SR16810C, kết hợp máy vi tính.

Các chỉ tiêu: Lượng khí phát thải (mg/m²/h), tổng lượng khí CH₄ và N₂O phát thải theo vụ (g/m²), tiềm năng gây nóng trái đất

2.4.2.7. Chỉ tiêu về lượng nước tưới: Lượng nước tưới cho lúa trong quá trình sinh trưởng phát triển.

2.4.3. Phương pháp xử lý số liệu

Xử lý số liệu bao gồm tính trung bình, phân tích ANOVA 1 nhân tố và 2 nhân tố, tính LSD₀,₀₅ bằng phần mềm Statistic 10.0. Vẽ đồ thị, biểu đồ theo phần mềm Excel.

2.5. ĐIỀU KIỆN THỜI TIẾT KHÍ HẬU:

Diễn biến thời tiết khí hậu và đánh giá sự ảnh hưởng của các yếu tố khí hậu đến thí nghiệm cơ bản và mô hình sản xuất từ năm 2014 - 2016

CHƯƠNG 3. KẾT QUẢ NGHIỆN CỨU VÀ THẢO LUẬN

3.1. ẢNH HƯỞNG CỦA LƯỢNG GIÓNG GIEO ĐẾN HAI GIỐNG LÚA CHẤT LƯỢNG HT1 VÀ P6 THEO HỆ THỐNG THÂM CANH LÚA CẢI TIẾN (SRI) Ở VÙNG CHỦ ĐỘNG VÀ KHÔNG CHỦ ĐỘNG NƯỚC TƯỚI

3.1.1. Ảnh hưởng của lượng giống gieo đến khả năng đẻ nhánh và chiều cao cây cuối cùng của hai giống lúa chất lượng HT1 và P6

<table>
<thead>
<tr>
<th>Giống</th>
<th>Lượng giống gieo (kg/ha)</th>
<th>Vụ Đông Xuân 2013 – 2014</th>
<th>Vụ hè thu 2014</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Số nhánh tối đa (nhánh)</td>
<td>Số nhánh hữu hiệu (nhánh)</td>
<td>Tỷ lệ nhánh hữu hiệu (%)</td>
</tr>
<tr>
<td>HT1 (D/C)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>5,90 ab</td>
<td>4,13 abc</td>
<td>75,54</td>
</tr>
<tr>
<td>40</td>
<td>5,40 bc</td>
<td>3,97 bc</td>
<td>74,14</td>
</tr>
<tr>
<td>60</td>
<td>5,23 c</td>
<td>4,03 bc</td>
<td>77,05</td>
</tr>
<tr>
<td>80</td>
<td>4,97 c</td>
<td>3,27 d</td>
<td>65,98</td>
</tr>
</tbody>
</table>

1. Vùng chủ động nước tưới (Huyện Quảng Ninh)
2. Vùng không chịu đồng nước tự do (Huyện Bố Trạch)

<table>
<thead>
<tr>
<th>(D/C)</th>
<th>P6</th>
<th>HT1 (D/C)</th>
<th>LSD0,05</th>
</tr>
</thead>
<tbody>
<tr>
<td>20</td>
<td>6,30a 4,70a 77,90 99,45cd 6,50a 4,53ab 69,85 95,11c</td>
<td>0,84</td>
<td>0,59</td>
</tr>
<tr>
<td>40</td>
<td>5,70bc 4,47ab 78,46 98,72d 6,27abc 4,47ab 71,34 94,25c</td>
<td>0,67</td>
<td>0,43</td>
</tr>
<tr>
<td>60</td>
<td>5,50bc 4,40ab 80,09 97,11c 5,97abc 4,27ab 71,52 93,81c</td>
<td>3,03</td>
<td>1,48</td>
</tr>
<tr>
<td>80(D/C)</td>
<td>5,43bc 3,83cd 70,64 96,45e 5,80bc 3,73cd 65,09 92,19d</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Ghi chú: Các công thức có cùng ký tự trong một cột trong một vụ thí nghiệm không có sai khác ý nghĩa tại mức 0,05
Số nhánh, tỷ lệ nhánh hữu hiệu: Ở 2 vùng nghiên cứu, lượng giống gieo cao có số nhánh thấp hơn lượng giống gieo thấp. Lượng giống gieo cao thì mật độ cây gao nên bị cạnh tranh về dinh dưỡng và che khuất ánh sáng, hạn chế kích thích mầm phát triển. Cũng một giống, không có sự khai thác đáng kể về số nhánh khi canh tác ở 2 thời vụ khác nhau, nhưng theo thời vụ không tác động đến số nhánh của một giống.

Chiều cao cây cuối cùng: Lượng giống gieo tác động đến chiều cao cây cuối cùng, các lượng giống gieo thấp (20 - 40 kg/ha) cho chiều cao cây cuối cùng cao hơn lượng giống cao (80 kg/ha). Giống HT1 có chiều cao cây cuối cùng cao hơn giống P6. Ở vùng chịu đồng nước tự do, chiều cao cây cao hơn trong điều kiện không chịu đồng nước tự do trên 2 giống thí nghiệm.

3.1.2. Ảnh hưởng của lượng giống gieo đến các yếu tố cấu thành năng suất và năng suất của hai giống lúa chất lượng HT1 và P6

3.1.2.1. Vụ đông xuân 2013 - 2014

Bảng 3.2. Ảnh hưởng của lượng giống gieo đến các yếu tố cấu thành năng suất và năng suất của hai giống lúa chất lượng HT1 và P6 trong vụ đông xuân 2013 - 2014

<table>
<thead>
<tr>
<th>Giống</th>
<th>Lượng giống gieo (kg/ha)</th>
<th>Số bông/m²</th>
<th>Số hạt/bông</th>
<th>Số hạt chắc/bông</th>
<th>P1000 hạt (g)</th>
<th>NLSLT (tấn/ha)</th>
<th>NSTT (tấn/ha)</th>
</tr>
</thead>
<tbody>
<tr>
<td>HT1 (D/C)</td>
<td>20</td>
<td>270,4f 111,2bcd 97,2bcd 22,95c 6,03d 4,92f</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>40</td>
<td>282,7e 109,4cd 96,6bcd 22,70c 6,20d 5,51e</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>60</td>
<td>314,1b 110,6bcd 95,3cd 22,21d 6,68bc 5,94c</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Giống</td>
<td>Lượng giống gieo (kg/ha)</td>
<td>Số bông/m²</td>
<td>Số hạt/bông</td>
<td>Số hạt chắc/bông</td>
<td>P1000 hạt (g)</td>
<td>NSLT (tấn/ha)</td>
<td>NSTT (tấn/ha)</td>
</tr>
<tr>
<td>-------</td>
<td>------------------------</td>
<td>------------</td>
<td>-------------</td>
<td>------------------</td>
<td>---------------</td>
<td>---------------</td>
<td>---------------</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>HT1 (D/C)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>289,4c</td>
<td>113,3ab</td>
<td>99,2bc</td>
<td>21,58c</td>
<td>6,49c</td>
<td>4,84d</td>
</tr>
<tr>
<td></td>
<td>40</td>
<td>329,6a</td>
<td>104,4c</td>
<td>95,4d</td>
<td>22,40d</td>
<td>7,04ab</td>
<td>5,77a</td>
</tr>
<tr>
<td></td>
<td>60</td>
<td>320,8b</td>
<td>106,2bc</td>
<td>97,0cd</td>
<td>21,56d</td>
<td>6,70bc</td>
<td>5,55b</td>
</tr>
<tr>
<td></td>
<td>80 (D/C)</td>
<td>308,6c</td>
<td>111,0abc</td>
<td>98,4bc</td>
<td>21,98c</td>
<td>6,65bc</td>
<td>5,22c</td>
</tr>
<tr>
<td></td>
<td>P6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>268,6g</td>
<td>120,4a</td>
<td>103,6a</td>
<td>23,69a</td>
<td>6,59c</td>
<td>4,93d</td>
</tr>
<tr>
<td></td>
<td>40</td>
<td>278,7f</td>
<td>116,2ab</td>
<td>101,2ab</td>
<td>23,55a</td>
<td>6,64c</td>
<td>5,16c</td>
</tr>
<tr>
<td></td>
<td>60</td>
<td>311,2c</td>
<td>110,1bc</td>
<td>98,1cd</td>
<td>23,32b</td>
<td>7,12a</td>
<td>5,67ab</td>
</tr>
<tr>
<td></td>
<td>80 (D/C)</td>
<td>294,6d</td>
<td>114,6ab</td>
<td>99,1bc</td>
<td>23,21b</td>
<td>6,78bc</td>
<td>5,31c</td>
</tr>
<tr>
<td></td>
<td>LSD0,05</td>
<td>4,4</td>
<td>10,2</td>
<td>3,3</td>
<td>0,50</td>
<td>0,30</td>
<td>0,16</td>
</tr>
</tbody>
</table>

Ghi chú: Các công thức có cùng ký tự trong một cột trong một vụ thí nghiệm không có sai khác ý nghĩa tại mức 0,05

* Vùng chủ động nước tưới: Năng suất thực thu: So với công thức đối chứng (80 kg/ha), NSTT cao nhất tại lượng giống gieo 60 kg/ha trên 2 giống: 5,94 tấn/ha (HT1) - 6,69 tấn/ha (P6), thấp nhất ở lượng giống gieo 20 kg/ha: 4,92 (HT1) - 5,45 tấn/ha (P6).

* Vùng không chủ động nước tưới: Các lượng giống gieo (80 kg/ha) cho ưu thế về NSTT và NSTT đạt cao nhất so với các lượng giống gieo 40 kg/ha và 20 kg/ha (HT1) và P6 trong vụ hè thu 2014.

3.1.2.2. Vụ hè thu 2014

Bảng 3.3. Ảnh hưởng của lượng giống gieo đến các yếu tố cấu thành năng suất và năng suất của hai giống lúa chất lượng HT1 và P6 trong vụ hè thu 2014

1. Vùng chủ động nước tưới (Huyện Quảng Ninh)

2. Vùng không chủ động nước tưới (Huyện Bố Trạch)
<table>
<thead>
<tr>
<th>HT1 (Đ/C)</th>
<th>20</th>
<th>260,1<sup>c</sup></th>
<th>102,7<sup>d</sup></th>
<th>94,7<sup>abc</sup></th>
<th>22,53<sup>abc</sup></th>
<th>5,55<sup>de</sup></th>
<th>4,62<sup>d</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>40</td>
<td>274,4<sup>b</sup></td>
<td>103,1<sup>cd</sup></td>
<td>93,6<sup>bcd</sup></td>
<td>22,48<sup>abc</sup></td>
<td>5,77<sup>cd</sup></td>
<td>4,93<sup>c</sup></td>
</tr>
<tr>
<td></td>
<td>60</td>
<td>291,7<sup>a</sup></td>
<td>106,2<sup>b</sup></td>
<td>93,2<sup>bcd</sup></td>
<td>22,30<sup>bc</sup></td>
<td>6,06<sup>b</sup></td>
<td>5,24<sup>b</sup></td>
</tr>
<tr>
<td>80 (Đ/C)</td>
<td>289,2<sup>a</sup></td>
<td>107,6<sup>b</sup></td>
<td>91,6<sup>d</sup></td>
<td>22,14<sup>c</sup></td>
<td>5,87<sup>bcd</sup></td>
<td>5,11<sup>b</sup></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>P6</th>
<th>20</th>
<th>251,2<sup>d</sup></th>
<th>105,7<sup>bcd</sup></th>
<th>93,1<sup>cd</sup></th>
<th>23,18<sup>a</sup></th>
<th>5,36<sup>e</sup></th>
<th>4,61<sup>d</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>40</td>
<td>259,4</td>
<td>107,9<sup>b</sup></td>
<td>93,1<sup>cd</sup></td>
<td>23,02<sup>ab</sup></td>
<td>5,56<sup>de</sup></td>
<td>4,87<sup>c</sup></td>
</tr>
<tr>
<td></td>
<td>60</td>
<td>287,3<sup>a</sup></td>
<td>113,1<sup>a</sup></td>
<td>97,2<sup>a</sup></td>
<td>23,13<sup>ab</sup></td>
<td>6,46<sup>a</sup></td>
<td>5,45<sup>a</sup></td>
</tr>
<tr>
<td>80 (Đ/C)</td>
<td>276,4<sup>b</sup></td>
<td>114,7<sup>a</sup></td>
<td>96,1<sup>b</sup></td>
<td>23,06<sup>ab</sup></td>
<td>6,13<sup>b</sup></td>
<td>5,15<sup>b</sup></td>
<td></td>
</tr>
</tbody>
</table>

LSD_{0,05} = 8,1

Ghi chú: Các công thức có cùng ký tự trong một cột trong một vụ thí nghiệm không có sự khác biệt ý nghĩa tại mức 0,05.

3.1.3. Ảnh hưởng của lượng giống gieo đến hiệu quả kinh tế của hai giống lúa chất lượng HT1 và P6

Bảng 3.4. Hiệu quả kinh tế của các lượng giống gieo cho hai giống lúa chất lượng

<table>
<thead>
<tr>
<th>Lượng giống gieo</th>
<th>Vụ đông xuân 2013 - 2014</th>
<th>Vụ hè thu 2014</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Giống HT1</td>
<td>Giống P6</td>
</tr>
<tr>
<td></td>
<td>Lợi nhuận (1000 đồng/ha)</td>
<td>VCR</td>
</tr>
<tr>
<td>20</td>
<td>16.788,0</td>
<td>2,07</td>
</tr>
<tr>
<td>40</td>
<td>20.207,8</td>
<td>2,26</td>
</tr>
<tr>
<td>60</td>
<td>22.472,8</td>
<td>2,37</td>
</tr>
<tr>
<td>80 (Đ/C)</td>
<td>20.751,2</td>
<td>2,23</td>
</tr>
<tr>
<td>20</td>
<td>8.559,5</td>
<td>1,53</td>
</tr>
<tr>
<td>40</td>
<td>10.019,5</td>
<td>1,61</td>
</tr>
<tr>
<td>60</td>
<td>14.899,5</td>
<td>1,88</td>
</tr>
<tr>
<td>80 (Đ/C)</td>
<td>13.459,5</td>
<td>1,78</td>
</tr>
</tbody>
</table>

Trong vụ đông xuân 2013 - 2014, VCR vùng chủ động nước tự nhiên cho thấy lượng giống gieo 60 kg/ha ở giống P6 cho hiệu quả kinh tế cao hơn giống HT.
Tương tự ở vụ hè thu, VCR ở lượng giống gieo 40 kg/ha trên giống HT1 cao hơn ở lượng giống gieo 60 kg/ha trên giống P6, do vậy ưu thế về hiệu quả kinh tế thuộc về giống HT1 ở lượng giống gieo 40 kg/ha. Trên vùng không chủ động nước tưới, trong vụ hè thu 2014 thì VCR giống HT1 cao hơn giống P6, trong vụ đông xuân 2013 - 2014, VCR giống P6 cao hơn giống HT1 và xao nhất ở mức 60 kg/ha. Ưu thế hiệu quả kinh tế thuộc về giống HT1 trong vụ hè thu 2014 và giống P6 trong vụ đông xuân 2013 - 2014.

Tóm lại: Các lượng giống gieo 20 kg/ha - 80 kg/ha đều ảnh hưởng đến TGSTPT, khả năng đẻ nhánh, chiều cao cây cuối cùng, một số chỉ tiêu về rễ, tính hình phát sinh của sâu bệnh hại chính, NSLT và NSTT của 02 giống lúa HT1 và P6 trên vùng chủ động và không chủ động tưới. Trong vụ đông xuân, NSTT cao nhất ở lượng giống gieo 60 kg/ha từ 5,94 tấn/ha (HT1) - 6,69 tấn/ha (P6) trên vùng chủ động nước tưới và từ 5,31 tấn/ha (HT1) - 5,60 tấn/ha (P6) trên vùng không chủ động nước tưới. Trong vụ hè thu 2014, NSTT cao nhất ở lượng giống gieo 40 kg/ha (5,77 tấn/ha, HT1) và lượng giống gieo 60 kg/ha với năng suất từ 5,24 (HT1) - 5,45 tấn/ha (P6) trên vùng không chủ động tưới.

3.2. ẢNH HƯỞNG CỦA TỔ HỢP PHÂN BÓN ĐẾN HAI GIỐNG LÚA CHẤT LƯỢNG HT1 VÀ P6 THEO HỆ THỐNG THÂM CANH LÚA CẢI TIẾN (SRI) Ở VÙNG CHỦ ĐỘNG VÀ KHÔNG CHỦ ĐỘNG NƯỚC TƯỚI 3.2.1. Ảnh hưởng của tổ hợp phân bón đến khả năng đẻ nhánh và chiều cao cây cuối cùng của hai giống lúa chất lượng HT1 và P6

Bảng 3.5. Ảnh hưởng của tổ hợp phân bón đến khả năng đẻ nhánh và chiều cao cây cuối cùng của hai giống lúa chất lượng HT1 và P6

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Số nhánh</td>
<td>Số nhánh</td>
<td>Tỷ lệ</td>
</tr>
<tr>
<td></td>
<td>tổ dài (nhánh)</td>
<td>tổ hiệu (nhánh)</td>
<td>nhánh (%)</td>
</tr>
<tr>
<td>HT1</td>
<td>(D/C)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>P1 (D/C)</td>
<td>4,87<sup>c</sup></td>
<td>3,07<sup>c</sup></td>
</tr>
<tr>
<td></td>
<td>P2</td>
<td>5,20<sup>bcd</sup></td>
<td>3,97<sup>d</sup></td>
</tr>
<tr>
<td></td>
<td>P3</td>
<td>5,40<sup>abcd</sup></td>
<td>4,17<sup>cd</sup></td>
</tr>
<tr>
<td></td>
<td>P4</td>
<td>5,47<sup>abcd</sup></td>
<td>4,23<sup>cd</sup></td>
</tr>
<tr>
<td></td>
<td>P5</td>
<td>5,67<sup>ab</sup></td>
<td>4,40<sup>bc</sup></td>
</tr>
<tr>
<td>P6</td>
<td>(D/C)</td>
<td>4,67<sup>d</sup></td>
<td>3,37<sup>e</sup></td>
</tr>
<tr>
<td></td>
<td>P2</td>
<td>5,43<sup>abcd</sup></td>
<td>4,37<sup>bc</sup></td>
</tr>
<tr>
<td></td>
<td>P3</td>
<td>5,63<sup>abc</sup></td>
<td>4,43<sup>bc</sup></td>
</tr>
<tr>
<td></td>
<td>P4</td>
<td>5,90<sup>ab</sup></td>
<td>4,57<sup>ab</sup></td>
</tr>
<tr>
<td></td>
<td>P5</td>
<td>6,10<sup>a</sup></td>
<td>4,80<sup>a</sup></td>
</tr>
<tr>
<td>LSD<sub>0.05</sub></td>
<td>0,87</td>
<td>0,31</td>
<td>1,51</td>
</tr>
<tr>
<td>2. Vùng không chủ động nước tự (Huyện Bố Trạch)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HT1 (D/C)</td>
<td>P1</td>
<td>3,30<sup>f</sup></td>
<td>2,23<sup>c</sup></td>
</tr>
<tr>
<td></td>
<td>P2</td>
<td>4,10<sup>e</sup></td>
<td>2,97<sup>b</sup></td>
</tr>
<tr>
<td></td>
<td>P3</td>
<td>4,20<sup>de</sup></td>
<td>3,03<sup>ab</sup></td>
</tr>
<tr>
<td></td>
<td>P4</td>
<td>4,30<sup>bcd</sup></td>
<td>3,07<sup>ab</sup></td>
</tr>
<tr>
<td></td>
<td>P5</td>
<td>4,50<sup>ab</sup></td>
<td>3,20<sup>ab</sup></td>
</tr>
<tr>
<td>P6</td>
<td>P1</td>
<td>3,37<sup>f</sup></td>
<td>2,33<sup>c</sup></td>
</tr>
<tr>
<td></td>
<td>P2</td>
<td>4,20<sup>de</sup></td>
<td>3,10<sup>ab</sup></td>
</tr>
<tr>
<td></td>
<td>P3</td>
<td>4,40<sup>bc</sup></td>
<td>3,17<sup>ab</sup></td>
</tr>
<tr>
<td></td>
<td>P4</td>
<td>4,53<sup>ab</sup></td>
<td>3,23<sup>ab</sup></td>
</tr>
<tr>
<td></td>
<td>P5</td>
<td>4,60<sup>a</sup></td>
<td>3,30<sup>a</sup></td>
</tr>
<tr>
<td></td>
<td>LSD<sub>0.05</sub></td>
<td>0,29</td>
<td>0,28</td>
</tr>
</tbody>
</table>

2. Vùng không chủ động nước tự (Huyện Quảng Ninh)

3.2.2. Ảnh hưởng của tổ hợp phân bón đến các yếu tố cấu thành năng suất và năng suất của hai giống lúa chất lượng HT1 và P6

3.2.2.1. Vụ đông xuân 2013 - 2014

Bảng 3.6. Ảnh hưởng của tổ hợp phân bón đến các yếu tố cấu thành năng suất và năng suất của hai giống lúa chất lượng HT1 và P6 trong vụ đông xuân 2013 – 2014

<table>
<thead>
<tr>
<th>Giống</th>
<th>Phân bón</th>
<th>Số bông/m²</th>
<th>Số hạt/bông</th>
<th>Số hạt chắc/bông</th>
<th>P<sub>1000</sub> hạt (g)</th>
<th>NSLT (tấn/ha)</th>
<th>NSTT (tấn/ha)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Vùng chủ động nước tự (Huyện Quảng Ninh)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HT1 (D/C)</td>
<td>P1 (D/C)</td>
<td>295,4<sup>f</sup></td>
<td>104,3<sup>f</sup></td>
<td>82,9<sup>g</sup></td>
<td>22,11<sup>d</sup></td>
<td>5,41<sup>f</sup></td>
<td>5,14<sup>g</sup></td>
</tr>
<tr>
<td></td>
<td>P2</td>
<td>301,7<sup>e</sup></td>
<td>108,7<sup>e</sup></td>
<td>95,9<sup>c</sup></td>
<td>22,21<sup>d</sup></td>
<td>6,42<sup>de</sup></td>
<td>5,54<sup>f</sup></td>
</tr>
<tr>
<td></td>
<td>P3</td>
<td>303,1<sup>e</sup></td>
<td>110,4<sup>e</sup></td>
<td>98,4<sup>de</sup></td>
<td>22,81<sup>c</sup></td>
<td>6,18<sup>d</sup></td>
<td>5,73<sup>c</sup></td>
</tr>
<tr>
<td></td>
<td>P4</td>
<td>317,6<sup>d</sup></td>
<td>113,7<sup>d</sup></td>
<td>104,4<sup>bc</sup></td>
<td>22,81<sup>c</sup></td>
<td>7,56<sup>c</sup></td>
<td>6,37<sup>d</sup></td>
</tr>
<tr>
<td></td>
<td>P5</td>
<td>323,8<sup>bc</sup></td>
<td>115,9<sup>bc</sup></td>
<td>107,1<sup>ab</sup></td>
<td>23,96<sup>ab</sup></td>
<td>8,31<sup>b</sup></td>
<td>6,58<sup>bc</sup></td>
</tr>
<tr>
<td>P6</td>
<td>P1 (D/C)</td>
<td>307,1<sup>e</sup></td>
<td>115,2<sup>bc</sup></td>
<td>89,9<sup>f</sup></td>
<td>22,15<sup>d</sup></td>
<td>6,12<sup>e</sup></td>
<td>5,69<sup>ef</sup></td>
</tr>
<tr>
<td></td>
<td>P2</td>
<td>318,4<sup>cd</sup></td>
<td>118,7<sup>b</sup></td>
<td>101,2<sup>cd</sup></td>
<td>22,81<sup>c</sup></td>
<td>7,35<sup>c</sup></td>
<td>6,38<sup>cd</sup></td>
</tr>
<tr>
<td></td>
<td>P3</td>
<td>322,3<sup>cd</sup></td>
<td>119,3<sup>b</sup></td>
<td>103,7<sup>bc</sup></td>
<td>23,16<sup>c</sup></td>
<td>7,74<sup>c</sup></td>
<td>6,65<sup>b</sup></td>
</tr>
<tr>
<td></td>
<td>P4</td>
<td>328,7<sup>ab</sup></td>
<td>121,6<sup>a</sup></td>
<td>108,6<sup>ab</sup></td>
<td>23,78<sup>b</sup></td>
<td>8,48<sup>b</sup></td>
<td>6,94<sup>a</sup></td>
</tr>
<tr>
<td></td>
<td>P5</td>
<td>331,4<sup>a</sup></td>
<td>122,4<sup>a</sup></td>
<td>110,1<sup>a</sup></td>
<td>24,63<sup>a</sup></td>
<td>8,99<sup>a</sup></td>
<td>7,08<sup>a</sup></td>
</tr>
<tr>
<td>2. Vùng không chủ động nước tự (Huyện Bố Trạch)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HT1 (D/C)</td>
<td>P1 (D/C)</td>
<td>245,3<sup>f</sup></td>
<td>97,8<sup>g</sup></td>
<td>86,2<sup>e</sup></td>
<td>21,97<sup>d</sup></td>
<td>4,66<sup>g</sup></td>
<td>4,39<sup>f</sup></td>
</tr>
<tr>
<td></td>
<td>P2</td>
<td>259,7<sup>e</sup></td>
<td>100,3<sup>ef</sup></td>
<td>92,6<sup>d</sup></td>
<td>22,93<sup>bc</sup></td>
<td>5,52<sup>f</sup></td>
<td>5,18<sup>d</sup></td>
</tr>
<tr>
<td></td>
<td>P3</td>
<td>265,2<sup>de</sup></td>
<td>101,3<sup>e</sup></td>
<td>93,4<sup>cd</sup></td>
<td>23,10<sup>abc</sup></td>
<td>5,77<sup>e</sup></td>
<td>5,27<sup>cd</sup></td>
</tr>
<tr>
<td></td>
<td>P4</td>
<td>267,6<sup>d</sup></td>
<td>101,9<sup>de</sup></td>
<td>94,7<sup>cd</sup></td>
<td>23,23<sup>abc</sup></td>
<td>5,96<sup>de</sup></td>
<td>5,38<sup>c</sup></td>
</tr>
<tr>
<td></td>
<td>P5</td>
<td>275,6<sup>e</sup></td>
<td>105,7<sup>abc</sup></td>
<td>97,2<sup>bc</sup></td>
<td>23,33<sup>ab</sup></td>
<td>6,42<sup>c</sup></td>
<td>5,67<sup>ab</sup></td>
</tr>
<tr>
<td>P6</td>
<td>P1 (D/C)</td>
<td>277,2<sup>e</sup></td>
<td>93,9<sup>g</sup></td>
<td>87,4<sup>e</sup></td>
<td>22,23<sup>cd</sup></td>
<td>5,38<sup>f</sup></td>
<td>4,69<sup>e</sup></td>
</tr>
</tbody>
</table>
Ghi chú: Các công thức có cùng ký tự trong một cột trong một vụ thí nghiệm không có sai khác ý nghĩa tại mức 0,05.

Bảng 3.6 cho thấy: Tổ hợp phân bón 80 - 100 kg N + 45 - 60 kg P₂O₅ + 60 - 80 kg K₂O + 10 tấn phân chuồng (hoặc 01 tấn phân hữu cơ vệ sinh sống Gianh) có NSLT và NSTT cao hơn công thức đối chung P1 (100 kg N + 60 kg P₂O₅ + 80 kg K₂O). Công thức P4 cho ưu thế hơn hẳn các công thức còn lại ở vùng chủ động nước tưới, tương tự ở vùng không chủ động nước tưới là công thức P5. Giống P6 có ưu thế hơn giống HT1 do NSLT và NSTT cao hơn.

3.2.2.2. Vụ hè thu 2014

Bảng 3.7. Ảnh hưởng của tổ hợp phân bón đến các yếu tố cấu thành năng suất và năng suất của hai giống lúa chất lượng HT1 và P6 trong vụ hè thu 2014

<table>
<thead>
<tr>
<th>Giống</th>
<th>Phân bón</th>
<th>Số bông/m²</th>
<th>Số hạt/bông</th>
<th>Số hạt chắc/bông</th>
<th>P₁₀₀₀ hạt (g)</th>
<th>NSLT (tấn/ha)</th>
<th>NSTT (tấn/ha)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1. Vùng chủ động nước tưới (Huyện Quảng Ninh)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HT1 (D/C)</td>
<td>P1 (D/C)</td>
<td>305,4[^f]</td>
<td>101,3[^g]</td>
<td>91,6[^g]</td>
<td>20,98[^c]</td>
<td>5,87[^g]</td>
<td>4,99[^c]</td>
</tr>
<tr>
<td></td>
<td>P5</td>
<td>338,8[^a]</td>
<td>111,8[^de]</td>
<td>104,1[^a]</td>
<td>23,02[^ab]</td>
<td>8,11[^a]</td>
<td>6,27[^a]</td>
</tr>
<tr>
<td>P6</td>
<td>P1 (D/C)</td>
<td>301,1[^g]</td>
<td>114,1[^cd]</td>
<td>94,1[^lg]</td>
<td>21,94[^d]</td>
<td>6,22[^g]</td>
<td>4,81[^c]</td>
</tr>
<tr>
<td></td>
<td>P3</td>
<td>309,3[^e]</td>
<td>117,4[^abc]</td>
<td>100,2[^cd]</td>
<td>22,63[^d]</td>
<td>7,01[^d]</td>
<td>5,78[^c]</td>
</tr>
<tr>
<td></td>
<td>P4</td>
<td>316,3[^d]</td>
<td>119,0[^ab]</td>
<td>103,3[^ab]</td>
<td>23,32[^a]</td>
<td>7,62[^c]</td>
<td>6,02[^ab]</td>
</tr>
<tr>
<td>2. Vùng không chủ động nước tưới (Huyện Bố Trạch)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HT1 (D/C)</td>
<td>P1 (D/C)</td>
<td>275,9[^d]</td>
<td>103,8[^e]</td>
<td>90,4[^g]</td>
<td>21,67[^c]</td>
<td>5,40[^f]</td>
<td>4,41[^c]</td>
</tr>
<tr>
<td>P6</td>
<td>P1 (D/C)</td>
<td>274,3[^d]</td>
<td>111,2[^c]</td>
<td>91,6[^g]</td>
<td>22,95[^ab]</td>
<td>5,77[^c]</td>
<td>4,55[^c]</td>
</tr>
<tr>
<td></td>
<td>P2</td>
<td>279,7[^d]</td>
<td>112,6[^bc]</td>
<td>95,3[^de]</td>
<td>23,08[^ab]</td>
<td>6,16[^d]</td>
<td>5,21[^d]</td>
</tr>
<tr>
<td></td>
<td>P3</td>
<td>281,2[^d]</td>
<td>114,8[^b]</td>
<td>97,1[^cd]</td>
<td>23,12[^ab]</td>
<td>6,40[^d]</td>
<td>5,33[^bcd]</td>
</tr>
<tr>
<td></td>
<td>P5</td>
<td>295,4[^bc]</td>
<td>119,0[^a]</td>
<td>103,1[^a]</td>
<td>23,35[^a]</td>
<td>7,11[^a]</td>
<td>5,78[^a]</td>
</tr>
</tbody>
</table>

[^a]: 102,1, 108,9, 99,9, 23,67, 7,03, 5,57
[^b]: 290,2, 105,2, 95,5, 23,43, 6,49, 5,42
[^c]: 301,3, 107,9, 102,1, 23,90, 7,35, 5,84
[^d]: 285,7, 102,1, 93,5, 22,97, 6,14, 5,37
[^e]: 290,2, 105,2, 95,5, 23,43, 6,49, 5,42
Ghi chú: Các công thức có cùng ký tự trong một cột trong một vụ thí nghiệm không có sai khác ý nghĩa tại mức 0,05.
Qua bảng 3.7 cho thấy: Vùng chủ động nước tưới tiếp tục thể hiện ưu thế vượt trội so với vùng không chủ động nước tưới về năng suất. Ưu thế về năng suất ở các công thức P4, P5 ở vùng chủ động nước tưới (100 kg N + 45 - 60 kg P$_2$O$_5$ + 60 - 80 kg K$_2$O + 10 tấn phân chuồng (hoặc 01 tấn phân hữu cơ vi sinh Sông Gianh) và công thức P5 ở vùng không chủ động nước tưới.

3.2.3. Ảnh hưởng của tổ hợp phân bón đến một số tính chất hóa học đất

Bảng 3.8. Ảnh hưởng của tổ hợp phân bón đến một số tính chất hóa học đất sau thi nghiệm

<table>
<thead>
<tr>
<th>Công</th>
<th>Chỉ tiêu</th>
<th>pH$_{KCl}$</th>
<th>OC (%)</th>
<th>N (%)</th>
<th>P$_2$O$_5$ (%)</th>
<th>K$_2$O (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Vùng chủ động nước tưới (Huyện Quảng Ninh)</td>
<td>HT1 (Đ/C)</td>
<td>P1 (Đ/C)</td>
<td>4,22</td>
<td>1,33</td>
<td>0,046</td>
<td>0,023</td>
</tr>
<tr>
<td></td>
<td></td>
<td>P2</td>
<td>4,29</td>
<td>1,38</td>
<td>0,047</td>
<td>0,042</td>
</tr>
<tr>
<td></td>
<td></td>
<td>P3</td>
<td>4,34</td>
<td>1,43</td>
<td>0,050</td>
<td>0,049</td>
</tr>
<tr>
<td></td>
<td></td>
<td>P4</td>
<td>4,48</td>
<td>1,42</td>
<td>0,053</td>
<td>0,053</td>
</tr>
<tr>
<td></td>
<td></td>
<td>P5</td>
<td>4,58</td>
<td>1,50</td>
<td>0,057</td>
<td>0,057</td>
</tr>
<tr>
<td></td>
<td>P6</td>
<td>P1</td>
<td>4,24</td>
<td>1,36</td>
<td>0,048</td>
<td>0,020</td>
</tr>
<tr>
<td></td>
<td></td>
<td>P2</td>
<td>4,32</td>
<td>1,37</td>
<td>0,052</td>
<td>0,041</td>
</tr>
<tr>
<td></td>
<td></td>
<td>P3</td>
<td>4,28</td>
<td>1,44</td>
<td>0,053</td>
<td>0,050</td>
</tr>
<tr>
<td></td>
<td></td>
<td>P4</td>
<td>4,52</td>
<td>1,45</td>
<td>0,058</td>
<td>0,054</td>
</tr>
<tr>
<td></td>
<td></td>
<td>P5</td>
<td>4,48</td>
<td>1,51</td>
<td>0,060</td>
<td>0,058</td>
</tr>
<tr>
<td>2. Vùng không chủ động nước tưới (Huyện Bố Trạch)</td>
<td>HT1</td>
<td>P1</td>
<td>4,21</td>
<td>2,07</td>
<td>0,059</td>
<td>0,030</td>
</tr>
<tr>
<td></td>
<td></td>
<td>P2</td>
<td>4,35</td>
<td>2,26</td>
<td>0,063</td>
<td>0,034</td>
</tr>
<tr>
<td></td>
<td></td>
<td>P3</td>
<td>4,33</td>
<td>2,21</td>
<td>0,064</td>
<td>0,035</td>
</tr>
<tr>
<td></td>
<td></td>
<td>P4</td>
<td>4,30</td>
<td>2,20</td>
<td>0,060</td>
<td>0,034</td>
</tr>
<tr>
<td></td>
<td></td>
<td>P5</td>
<td>4,38</td>
<td>2,30</td>
<td>0,067</td>
<td>0,040</td>
</tr>
<tr>
<td></td>
<td>P6</td>
<td>P1</td>
<td>4,14</td>
<td>2,00</td>
<td>0,058</td>
<td>0,024</td>
</tr>
<tr>
<td></td>
<td></td>
<td>P2</td>
<td>4,28</td>
<td>2,18</td>
<td>0,062</td>
<td>0,035</td>
</tr>
<tr>
<td></td>
<td></td>
<td>P3</td>
<td>4,25</td>
<td>2,20</td>
<td>0,063</td>
<td>0,040</td>
</tr>
</tbody>
</table>
Bón phân với lượng 80 kg N + 45 kg P₂O₅ + 60 kg K₂O + 10 tấn phân chuồng/ha (hoặc 01 tấn phân hữu cơ vi sinh/ha) ở 2 vùng chủ động và không chủ động tưới nước góp phần cải thiện tính chất hóa học đất, là cơ sở quan trọng để nâng cao dinh dưỡng khoáng và độ phì của đất3.2.7. Ảnh hưởng của tổ hợp phân bón đến hiệu quả kinh tế của hai giống lúa chất lượng

Bảng 3.9. Hiệu quả kinh tế của các công thức phân bón cho hai giống lúa chất lượng HT1 và P6

<table>
<thead>
<tr>
<th>Phân bón</th>
<th>Vụ đông xuân 2013 - 2014</th>
<th>Vụ hè thu 2014</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Giống HT1</td>
<td>Giống P6</td>
</tr>
<tr>
<td></td>
<td>Lợi nhuận (1000 đồng/ha)</td>
<td>VCR</td>
</tr>
<tr>
<td>P1 (D/C)</td>
<td>18.719,5, 2,27</td>
<td>22.294,5, 2,52</td>
</tr>
<tr>
<td>P2</td>
<td>19.569,5, 2,19</td>
<td>25.029,5, 2,52</td>
</tr>
<tr>
<td>P3</td>
<td>20.054,5, 2,17</td>
<td>26.034,5, 2,51</td>
</tr>
<tr>
<td>P4</td>
<td>23.912,1, 2,37</td>
<td>27.617,1, 2,58</td>
</tr>
<tr>
<td>P5</td>
<td>23.751,1, 2,25</td>
<td>27.027,1, 2,42</td>
</tr>
</tbody>
</table>

1. Vùng chủ động nước tưới (Huyện Quảng Ninh)

2. Vùng không chủ động nước tưới (Huyện Bố Trạch)

Ở vùng không chủ động nước tưới: Công thức phân bón P4 mặc dù VCR đạt cao nhưng lợi nhuận thấp hơn công thức phân bón P5, VCR công thức P5 đạt khá cao từ 1,74 - 1,80, năng suất cao hơn hàn công thức P4 và các công thức còn lại, do vậy ưu thế về hiệu quả kinh tế thuộc về công thức P5.
3.2.5. Ảnh hưởng của tổ hợp phân bón đến một số chỉ tiêu về phẩm chất gạo của hai giống lúa chất lượng HT1 và P6

Bảng 3.10. Ảnh hưởng của tổ hợp phân bón đến một số chỉ tiêu về phẩm chất gạo trên vùng chủ động và không chủ động nước tưới

<table>
<thead>
<tr>
<th>Giống</th>
<th>Chỉ tiêu</th>
<th>Phân bón</th>
<th>Tỷ lệ gạo xay (%)</th>
<th>Tỷ lệ gạo xát (%)</th>
<th>Tỷ lệ gạo nguyên (%)</th>
<th>Amylose (%)</th>
<th>Protein (%)</th>
<th>Chất lượng cơm (diểm)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>HT1 (D/C)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>P1 (D/C)</td>
<td>80,10c</td>
<td>71,20c</td>
<td>79,30c</td>
<td>17,91c</td>
<td>7,15f</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>P2</td>
<td>85,30a</td>
<td>73,40ed</td>
<td>82,60c</td>
<td>17,85c</td>
<td>7,21f</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>P3</td>
<td>85,70ah</td>
<td>74,70</td>
<td>83,50bcd</td>
<td>17,88d</td>
<td>7,25ef</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>P4</td>
<td>85,50ah</td>
<td>76,10b</td>
<td>84,10abcd</td>
<td>17,73c</td>
<td>7,54de</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>P5</td>
<td>86,40ah</td>
<td>76,80b</td>
<td>84,60bc</td>
<td>17,71c</td>
<td>7,72d</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>P6</td>
<td>83,20bc</td>
<td>72,30de</td>
<td>81,30e</td>
<td>21,87a</td>
<td>10,20c</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>P1 (D/C)</td>
<td>87,30ab</td>
<td>75,40bc</td>
<td>83,10cd</td>
<td>21,65a</td>
<td>10,72b</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>P2</td>
<td>87,80a</td>
<td>77,60b</td>
<td>84,20abc</td>
<td>21,67a</td>
<td>10,84ab</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>P3</td>
<td>89,30a</td>
<td>81,20a</td>
<td>86,60ab</td>
<td>21,15b</td>
<td>10,95ab</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>P4</td>
<td>89,90a</td>
<td>81,80a</td>
<td>86,90a</td>
<td>21,03b</td>
<td>11,07a</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>P5</td>
<td>83,30c</td>
<td>70,40c</td>
<td>76,20c</td>
<td>17,91d</td>
<td>6,85e</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>P1 (D/C)</td>
<td>83,40abc</td>
<td>71,60de</td>
<td>80,80ab</td>
<td>17,77d</td>
<td>6,91def</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>P2</td>
<td>83,90abc</td>
<td>72,80de</td>
<td>81,20ab</td>
<td>17,73d</td>
<td>7,14de</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>P3</td>
<td>85,50ab</td>
<td>74,20bcd</td>
<td>82,70ab</td>
<td>17,45c</td>
<td>7,23de</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>P4</td>
<td>85,80ab</td>
<td>75,80bc</td>
<td>82,50ab</td>
<td>17,61de</td>
<td>7,35d</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>P5</td>
<td>81,50bc</td>
<td>73,20de</td>
<td>79,50bc</td>
<td>21,15c</td>
<td>10,21c</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>P1 (D/C)</td>
<td>84,60ab</td>
<td>75,10bc</td>
<td>80,10bc</td>
<td>20,98c</td>
<td>10,43bc</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>P2</td>
<td>85,70ab</td>
<td>75,40bc</td>
<td>81,80ab</td>
<td>21,95a</td>
<td>10,62abc</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>P3</td>
<td>87,20a</td>
<td>77,20ab</td>
<td>83,50a</td>
<td>21,65b</td>
<td>10,87ab</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>P4</td>
<td>87,80a</td>
<td>79,30a</td>
<td>83,80a</td>
<td>21,67b</td>
<td>10,94a</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>P5</td>
<td>84,48</td>
<td>3,08</td>
<td>4,91</td>
<td>0,61</td>
<td>0,52</td>
<td></td>
</tr>
<tr>
<td>LSD0.05</td>
<td></td>
<td></td>
<td>5,30</td>
<td>3,39</td>
<td>3,29</td>
<td>0,83</td>
<td>0,40</td>
<td></td>
</tr>
</tbody>
</table>

Ghi chú: Các công thức có cùng ký tự trong một cột trong một vụ thí nghiệm không có sai khác ý nghĩa tại mức 0,05.

Chất lượng gạo là yếu tố do di truyền của giống quyết định chủ yếu, tuy nhiên các công thức phân bón có ảnh hưởng đến chất lượng gạo trong điều kiện SRI, các công thức có bón phân hữu cơ (phân hữu cơ vi sinh Sông Gianh và phân chuồng) cải thiện rõ một số chỉ tiêu về chất lượng xay xát, chất lượng dinh dưỡng và chất lượng nấu nướng của hai giống lúa chất lượng trên vùng chủ động và không chủ động nước túi. Ưu thế thuộc về các công thức phân bón P5, theo sau là công thức phân bón P4.

Tóm lại: Các công thức phân bón đều ảnh hưởng đến các chỉ tiêu về STPT, năng suất, phẩm chất gạo và tính chất hóa học đất. Xét về các chỉ tiêu sinh trưởng,
phát triển và năng suất, công thức phân bón P5 (80 kg N + 45 kg P₂O₅ + 60 kg K₂O + 500 kg vôi + 10 tấn phân chuồng/ha cho năng suất thực thu cao nhất trong cả hai vùng và 2 vụ của 2 giống nghiên cứu tiếp đến là công thức phân bón P4 (80 kg N + 45 kg P₂O₅ + 60 kg K₂O + 500 kg vôi + 01 tấn phân hữu cơ vi sinh Sông Gianh/ha), xét về hiệu quả kinh tế thì trên vùng chủ động nước tưới, công thức P4 có lợi nhuận và VCR đạt cao nhất, trên vùng không chủ động nước tưới thì công thức P5 có lợi nhuận và VCR đạt cao nhất. Ngoài ra ở các công thức phân bón này đều có chỉ tiêu chất lượng gạo như hàm lượng protein, chất lượng nấu nướng, chất lượng xay xát tốt hơn, đồng thời cải thiện đáng kể tính chất đất gồm có pH, OC, N, P₂O₅, K₂O.

3.3. ẢNH HƯỞNG CỦA CHẾ ĐỘ TƯỚI NƯỚC ĐẾN HAI GIÓNG LÚA CHẤT LƯỢNG HT1 và P6 THEO HỆ THỐNG THÂM CANH LÚA CẢI TIẾN (SRI) TẠI VÙNG CHỦ ĐỘNG NƯỚC TƯỚI

3.3.1. Ảnh hưởng của chế độ tưới nước đến các yếu tố cấu thành năng suất và năng suất của hai giống lúa chất lượng HT1 và P6

Bảng 3.11. Ảnh hưởng của chế độ tưới nước đến các yếu tố cấu thành năng suất và năng suất của hai giống lúa chất lượng

<table>
<thead>
<tr>
<th>Giống</th>
<th>Chế độ tưới nước</th>
<th>Số bông/m²</th>
<th>Số hạt/bông</th>
<th>Số hạt chắc/bông</th>
<th>P₁₀₀₀ (g)</th>
<th>NSLT (tấn/ha)</th>
<th>NSTT (tấn/ha)</th>
</tr>
</thead>
<tbody>
<tr>
<td>HT1 (D/C)</td>
<td>T1 (D/C)</td>
<td>261,4<sup>d</sup></td>
<td>103,4<sup>c</sup></td>
<td>88,8<sup>b</sup></td>
<td>22,14<sup>b</sup></td>
<td>5,14<sup>c</sup></td>
<td>4,74<sup>c</sup></td>
</tr>
<tr>
<td></td>
<td>T2</td>
<td>305,7<sup>c</sup></td>
<td>109,3<sup>bc</sup></td>
<td>94,9<sup>ab</sup></td>
<td>22,87<sup>a</sup></td>
<td>6,63<sup>b</sup></td>
<td>5,33<sup>b</sup></td>
</tr>
<tr>
<td>P6</td>
<td>T1 (D/C)</td>
<td>282,6<sup>b</sup></td>
<td>107,3<sup>ab</sup></td>
<td>91,6<sup>ab</sup></td>
<td>22,65<sup>ab</sup></td>
<td>5,86<sup>c</sup></td>
<td>5,51<sup>b</sup></td>
</tr>
<tr>
<td></td>
<td>T2</td>
<td>323,8<sup>a</sup></td>
<td>117,3<sup>a</sup></td>
<td>99,4<sup>a</sup></td>
<td>23,18<sup>a</sup></td>
<td>7,46<sup>a</sup></td>
<td>6,44<sup>a</sup></td>
</tr>
<tr>
<td>HT1 (D/C)</td>
<td>T1 (D/C)</td>
<td>269,7<sup>c</sup></td>
<td>105,2<sup>b</sup></td>
<td>91,2</td>
<td>22,11</td>
<td>5,44<sup>c</sup></td>
<td>4,82<sup>c</sup></td>
</tr>
<tr>
<td></td>
<td>T2</td>
<td>318,6<sup>a</sup></td>
<td>108,1<sup>b</sup></td>
<td>99,1<sup>a</sup></td>
<td>22,53<sup>b</sup></td>
<td>7,11<sup>a</sup></td>
<td>5,63<sup>a</sup></td>
</tr>
<tr>
<td>P6</td>
<td>T1 (D/C)</td>
<td>270,4<sup>c</sup></td>
<td>115,1<sup>a</sup></td>
<td>93,4<sup>b</sup></td>
<td>23,04<sup>a</sup></td>
<td>5,82<sup>b</sup></td>
<td>5,15<sup>b</sup></td>
</tr>
<tr>
<td></td>
<td>T2</td>
<td>308,7<sup>b</sup></td>
<td>118,4<sup>a</sup></td>
<td>102,1<sup>b</sup></td>
<td>23,45<sup>a</sup></td>
<td>7,39<sup>a</sup></td>
<td>5,74<sup>a</sup></td>
</tr>
</tbody>
</table>

Ghi chú: Các công thức có cùng ký tự trong một cột trong một vụ thí nghiệm không có sai khác ý nghĩa tại mức 0,05.

Vụ đông xuân 2013 - 2014 cũng như hè thu 2014, giữa chế độ tưới nước T1 và chế độ tưới nước T2 thì ưu thế thuộc về công thức T2, có NSLT và NSTT cao hơn công thức T1 (D/C). Trong vụ đông xuân 2013 - 2014, giống P6 có ưu thế hơn giống HT1 về số bông/m², trong vụ hè thu 2014 thì giống HT1 có ưu thế hơn giống P6 trong ở một chế độ tưới nước. Chế độ tưới nước ướt khô xen kẽ (T2) có năng suất cao hơn chế độ tưới nước ngập thường xuyên (T1)
3.3.2. Ảnh hưởng của chế độ tưới nước đến hiệu quả kinh tế của hai giống lúa chất lượng HT1 và P6

Bảng 3.12. Hiệu quả kinh tế của chế độ tưới nước trên hai giống lúa chất lượng

<table>
<thead>
<tr>
<th>Giống</th>
<th>Chế độ tưới nước</th>
<th>Vụ đông xuân 2013 - 2014</th>
<th>VCR tăng so với đối chứng (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Tổng thu (1000 đồng/ha)</td>
<td>Tổng chi (1000 đồng/ha)</td>
<td>Lợi nhuận (1000 đồng/ha)</td>
</tr>
<tr>
<td>HT1 (D/C)</td>
<td>T1 (D/C)</td>
<td>30.810,0</td>
<td>16.310,5</td>
</tr>
<tr>
<td></td>
<td>T2</td>
<td>35.815,0</td>
<td>16.050,5</td>
</tr>
<tr>
<td>P6</td>
<td>T1 (D/C)</td>
<td>34.645,0</td>
<td>16.310,5</td>
</tr>
<tr>
<td></td>
<td>T2</td>
<td>41.866,5</td>
<td>16.050,5</td>
</tr>
</tbody>
</table>

* Vụ đông xuân 2013 – 2014

Từ lợi nhuận thu được, hiệu quả kinh tế trên các công thức T2 cao hơn so với công thức đối chứng T1 trên cả 2 giống và 2 vụ nghiên cứu. So sánh với hiệu quả kinh tế của công thức đối chứng T1, công thức T2 vụ đông xuân tăng 18,13% - 22,80%; vụ hè thu tăng 13,17 - 18,75%.

3.3.3. Ảnh hưởng của chế độ tưới nước đến số lần tưới và tổng lượng nước tưới của hai giống lúa chất lượng HT1 và P6

Bảng 3.13. Ảnh hưởng của chế độ tưới nước đến số lần tưới và tổng lượng nước tưới của hai giống lúa chất lượng trong vụ đông xuân 2013 - 2014 và hè thu 2014

<table>
<thead>
<tr>
<th>Giống</th>
<th>Chế độ tưới nước</th>
<th>Số lần tưới (lần)</th>
<th>Tổng lượng nước toàn vụ (m3/ha)</th>
<th>Lượng nước tiết kiệm so với đối chứng (%)</th>
<th>Số lần tưới (lần)</th>
<th>Tổng lượng nước toàn vụ (m3/ha)</th>
<th>Lượng nước tiết kiệm so với đối chứng (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>HT1 (D/C)</td>
<td>T1 (D/C)</td>
<td>14</td>
<td>4.219,5</td>
<td>-</td>
<td>13</td>
<td>4.162,5</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>T2</td>
<td>8</td>
<td>3.773,5</td>
<td>10,6</td>
<td>7</td>
<td>3.697,0</td>
<td>11,2</td>
</tr>
<tr>
<td>P6</td>
<td>T1 (D/C)</td>
<td>16</td>
<td>4.509,0</td>
<td>-</td>
<td>14</td>
<td>4.271,5</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>T2</td>
<td>9</td>
<td>3.813,5</td>
<td>15,4</td>
<td>8</td>
<td>3.783,5</td>
<td>11,4</td>
</tr>
</tbody>
</table>

Qua bảng 3.13 cho thấy: Công thức T2 ít tiêu tốn nước hơn thể hiện ưu thế tiết kiệm nước của chế độ tưới nước ướt khô xen kẽ so với chế độ tưới nước ngập thường xuyên. Bên cạnh đó, số lần tưới ở công thức T2 ít hơn, do vậy ít tốn công (chi phí đầu vào) cho sản xuất hơn so với công thức T1.

Tóm lại: Chế độ tưới nước ướt khô xen kẽ (T2) và chế độ tưới nước ngập thường xuyên (T1) theo SRI đã tác động rõ đến các chỉ tiêu về STPT, về sinh trưởng rễ của hai giống lúa chất lượng. Chế độ tưới nước phù hợp nhất là công thức T2, cho
tỷ lệ nhận hiệu quả, NSTT đạt cao hơn công thức T1 và ưu thế về tiết kiệm nước tưới, số lần tưới.

3.4. KẾT QUẢ XÂY DỰNG MÔ HÌNH SẢN XUẤT LÚA

3.4.1. Năng suất và các yếu tố cấu thành năng suất

<table>
<thead>
<tr>
<th>Công thức</th>
<th>Các yếu tố cấu thành năng suất</th>
<th>Năng suất</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Số bông/m²</td>
<td>Số hạt chắc/bông</td>
</tr>
<tr>
<td>1.1. Vùng chủ động nước tưới (Huyện Quảng Ninh)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>D/C</td>
<td>305,8<sup>b</sup></td>
<td>89,6<sup>b</sup></td>
</tr>
<tr>
<td>MH</td>
<td>325,2<sup>a</sup></td>
<td>102,3<sup>a</sup></td>
</tr>
<tr>
<td>LSD<sub>0,05</sub></td>
<td>5,5</td>
<td>9,2</td>
</tr>
<tr>
<td>1.2 Vùng không chủ động nước tưới (Huyện Bố Trạch)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>D/C</td>
<td>269,7<sup>b</sup></td>
<td>87,7<sup>b</sup></td>
</tr>
<tr>
<td>MH</td>
<td>298,3<sup>a</sup></td>
<td>97,1<sup>a</sup></td>
</tr>
<tr>
<td>LSD<sub>0,05</sub></td>
<td>2,5</td>
<td>3,1</td>
</tr>
<tr>
<td>2. Vụ hè thu 2015</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.1. Vùng chủ động nước tưới (Huyện Quảng Ninh)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>D/C</td>
<td>277,4<sup>b</sup></td>
<td>92,6<sup>b</sup></td>
</tr>
<tr>
<td>MH</td>
<td>331,3<sup>a</sup></td>
<td>103,5<sup>a</sup></td>
</tr>
<tr>
<td>LSD<sub>0,05</sub></td>
<td>4,1</td>
<td>4,3</td>
</tr>
<tr>
<td>2.2. Vùng không chủ động nước tưới (Huyện Bố Trạch)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>D/C</td>
<td>271,8<sup>b</sup></td>
<td>91,3<sup>b</sup></td>
</tr>
<tr>
<td>MH</td>
<td>302,8<sup>a</sup></td>
<td>97,9<sup>a</sup></td>
</tr>
<tr>
<td>LSD<sub>0,05</sub></td>
<td>2,9</td>
<td>6,1</td>
</tr>
</tbody>
</table>

Ghi chú: Các công thức có cùng ký tự trong một cột trong một vụ thí nghiệm không có sai khác ý nghĩa tại mức 0,05.

Tổ hợp phân bón: 80 kg N + 45 kg P₂O₅ + 60 kg K₂O + 500 kg vôi + 10 tấn phân chuồng/ha, trên vùng chủ động nước tưới và 80 kg N + 45 kg P₂O₅ + 60 kg K₂O + 500 kg vôi + 01 tấn phân hữu cơ vi sinh/ha trên vùng không chủ động nước tưới, canh tác theo hướng SRI có năng suất cao hơn so với đối chứng của dân. Vùng chủ động nước tưới năng suất thực thu vượt từ 21,4 - 22,5% so với đối chứng; tương ứng ở vùng không chủ động nước tưới, NSTT mô hình vượt từ 21,1 - 23,6% so với đối chứng.

3.4.2. Hiệu quả kinh tế của mô hình sản xuất:

Kết quả nghiên cứu tại bảng 3.27 ở luận án cho thấy lợi nhuận ở mô hình sản xuất theo hướng SRI tăng so với đối chứng từ 35,7% đến 38,6%, mức tăng lợi nhuận so với đối chứng ở vùng chủ động nước tưới cao hơn không chủ động nước tưới, chủ yếu do năng suất ở vùng chủ động nước tưới cao hơn ở vùng không chủ động nước tưới.

3.4.3. Phát thải khí CH₄, N₂O
Đánh giá phát thải khí CH$_4$ và N$_2$O về tổng lượng khí phát thải trong vụ đông xuân 2014 - 2015 và hè thu 2015 cho thấy:

Trong vụ đông xuân cũng như hè thu, kết quả thu được cho thấy phát thải CH$_4$ và N$_2$O trên mô hình thấp hơn so với đối chứng, khí CH$_4$ ở mô hình đạt 77,55 g/m2, khí N$_2$O trên mô hình đạt 0,73 g/m2, giá trị giảm tương ứng là 11,97% và 13,09%. Lượng CO$_2$ quy tương tiềm năng nóng lên toàn cầu (GWP) ở mô hình đạt 2155,3 g/m2, mức giảm tương đương 12,10% so với đối chứng.

Điều này cho thấy SRI là kỹ thuật canh tác giảm thiểu phát thải khí nhà kính trong sản xuất lúa.

Bảng 3.15. Tổng lượng khí CH$_4$ và N$_2$O phát thải trong vụ đông xuân 2014 - 2015 và hè thu 2015

<table>
<thead>
<tr>
<th>Mô hình</th>
<th>CH$_4$</th>
<th>N$_2$O</th>
<th>CO$_2$ (GWP)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Tổng</td>
<td>Giảm so với D/C (%)</td>
<td>TỔNG</td>
</tr>
<tr>
<td>D/C</td>
<td>79,46a</td>
<td>-</td>
<td>0,81a</td>
</tr>
<tr>
<td>Mô hình</td>
<td>65,41b</td>
<td>-17,68</td>
<td>0,66b</td>
</tr>
<tr>
<td>LSD$_{0.05}$</td>
<td>6,34</td>
<td>0,03</td>
<td>162,1</td>
</tr>
<tr>
<td>2. Vụ hè thu 2015</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D/C</td>
<td>88,10a</td>
<td>-</td>
<td>0,84a</td>
</tr>
<tr>
<td>Mô hình</td>
<td>77,55b</td>
<td>-11,97</td>
<td>0,73a</td>
</tr>
<tr>
<td>LSD$_{0.05}$</td>
<td>4,16</td>
<td>0,11</td>
<td>89,7</td>
</tr>
</tbody>
</table>

Ghi chú: Các công thức có cùng ký tự trong một cột trong một vụ thí nghiệm không có sự khác biệt ý nghĩa tại mức 0,05; +: tăng, -: giảm;

Kết luận chung mô hình sản xuất lúa: Kết quả xây dựng 02 mô hình sản xuất lúa trong vụ đông xuân 2014 - 2015 và hè thu 2015 cho thấy mô hình sản xuất theo SRI cho kết quả cao hơn đối chứng về các mặt năng suất, giảm phát thải khí nhà kính, nâng cao hiệu quả kinh tế, cụ thể: năng suất đạt 5,30 - 6,38 tấn/ha, cao hơn đối chứng từ 19,6 - 23,6%, lợi nhuận đạt 20.054.500 - 24.647.700 đồng/ha, cao hơn đối chứng từ 30,4 - 38,6%, giảm lượng khí phát thải CH$_4$ từ 11,97 - 17,68% và khí N$_2$O từ 13,09 - 18,52%.

CHƯƠNG 4. KẾT LUẬN VÀ ĐỀ NGHỊ

4.1. KẾT LUẬN

1. Nghiên cứu đã xác định được lượng giống gieo phù hợp cho hai giống lúa chất lượng HT1 và P6 theo SRI như sau: (i) trong vụ đông xuân là 60 kg/ha trên hai vùng chủ động và không chủ động nước tưới; (ii) trong vụ hè thu là 40 kg/ha đối với giống HT1 và 60 kg/ha đối với giống P6 ở vùng chủ động nước tự nhiên và 60 kg/ha cho cả hai giống HT1 và P6 trên vùng không chủ động nước tự nhiên. Ở các lượng giống gieo này cho năng suất và hiệu quả kinh tế đạt cao nhất.

2. Tổ hợp phân bón phù hợp trong hai vụ đông xuân và hè thu cho hai giống lúa chất lượng HT1 và P6 theo SRI đạt năng suất và hiệu quả kinh tế cao nhất như sau: (i)
trên vùng chủ động nước tự chảy là 80 kg N + 45 kg P$_2$O$_5$ + 60 kg K$_2$O + 500 kg vôi + 01 tấn phân hữu cơ vi sinh Sông Gianh/ha; (ii) trên vùng không chủ động nước tự chảy là 80 kg N + 45 kg P$_2$O$_5$ + 60 kg K$_2$O + 500 kg vôi + 10 tấn phân chuồng/ha. Bên cạnh đó, chất lượng gạo và tính chất đất cũng được cải thiện ở các công thức phân bón này trên cả hai vùng chủ động và không chủ động nước tự chảy.

3. Chế độ tưới nước ướt khô xen kẽ ở vùng chủ động nước tự chảy cho năng suất và hiệu quả kinh tế cao hơn so với chế độ tưới ngập thường xuyên, tiết kiệm lượng nước tự chảy 10,6 - 15,4% trong vụ đông xuân và 11,2 - 11,4% trong vụ hè thu.

4. Xây dựng thành công 2 mô hình sản xuất lúa ở vùng chủ động nước tự chảy tại xã An Ninh, huyện Quảng Ninh và vùng không chủ động nước tự chảy tại xã Đại Trạch, huyện Bố Trạch, tỉnh Quảng Bình với kết quả mô hình cho năng suất cao hơn đối chứng từ 19,6 - 22,5%, lợi nhuận vượt đối chứng từ 30,4% - 32,7% ở vùng chủ động nước tự chảy; năng suất cao hơn đối chứng từ 22,1 - 23,6%, lợi nhuận vượt đối chứng từ 35,7 - 38,6% ở vùng không chủ động nước tự chảy. Phát thải khí CH$_4$ trên mô hình sản xuất giảm từ 11,97 - 17,68% và phát thải khí N$_2$O giảm từ 13,09 - 18,52% so với canh tác thông thường.

4.2. ĐỀ NGHỊ

1. Đề nghị Sở Nông nghiệp và Phát triển nông thôn, Chi cục Trồng trọt và BVTV, Trung tâm Khuyến nông khuyến ngư tỉnh Quảng Bình chỉ đạo và đẩy mạnh xây dựng mô hình trình diễn về áp dụng các biện pháp kỹ thuật canh tác theo hướng SRI, tiếp tục mở rộng diện tích canh tác lúa theo hướng SRI trong giai đoạn hiện nay ở các điều kiện tương tự nhằm nâng cao năng suất, chất lượng và khả năng phát triển của các loại đất khác để có những kết luận toàn diện hơn.

2. Tiếp tục có những nghiên cứu về một số biện pháp kỹ thuật trong điều kiện canh tác theo hướng SRI để nâng suất, chất lượng và khả năng phát triển của các loại đất khác để có những kết luận toàn diện hơn.

3.2. Dương Thanh Ngọc, Trần Thị Lê, Hoàng Thị Thái Hòa, “Nghiên cứu ảnh hưởng của phân bón đến năng suất lúa theo hệ thống thâm canh lúa (SRI) trên đất không chủ động nước tại tỉnh Quảng Bình”, *Tạp chí Nông nghiệp và Phát triển nông thôn* (ISSN 1859-4581), Số 14/2017, Trang 52-57.
STUDY ON SOME TECHNICAL PRACTICES FOLLOWING SYSTEM OF RICE INTENSIFICATION (SRI) ON QUALITY RICE PRODUCTION IN QUANG BINH PROVINCE

AGRICULTURAL DOCTORAL THESIS
Specialized: Crop Science

Hue province, 2017
DUONG THANH NGOC

STUDY on SOME TECHNICAL PRACTICES FOLLOWING SYSTEM OF RICE INTENSIFICATION (SRI) ON QUALITY RICE PRODUCTION IN QUANG BINH PROVINCE

AGRICULTURAL DOCTORAL THESIS

Specialized: Crop Science
Code: 62 62 01 10

Supervisors:
1, Assoc. Prof. Dr. Hoang Thi Thai Hoa
2, Assoc. Prof. Tran Thi Le

Hue province, 2017
Works completed at:
Department of Agronomy, Hue University of Agriculture and Forestry

Supervisors:
1, Assoc. Prof. Dr. Hoang Thi Thai Hoa
2, Assoc. Prof. Tran Thi Le

The first reviewer:
The second reviewer:
The Thirth reviewer:

The Thesis will be protected at the thesis review board at Hue University
meeting at...in Hue University on
February......, 2018

The Thesis can be found at:
Library of Hue University of Agriculture and Forestry.
3.1. Duong Thanh Ngoc, Hoang Thi Thai Hoa, Nguyen Thi Hai Binh, Nguyen Xuan Thuy, "Study on the effect of seed volume on productivity of some high quality rice varieties under the system of rice intensification (SRI) in Quang province. "Journal of Science, Hue University (ISSN 1859 - 1388), No. 5/2016, T119, Page 103 - 111.

3.2. Duong Thanh Ngoc, Tran Thi Le, Hoang Thi Thai Hoa, "Study on the effect of fertilizer on rice yield under the system of rice (SRI) on non-water soil in Quang Binh province", Journal of Agriculture and Rural Development (ISSN 1859 - 4581), No. 14/2017, pp. 52-57.
PREAMBLE

1. PROPERTIES OF THE THEMES

Rice is an important food crop, the largest source of energy for human consumption. In the world, rice is grown by 250 million farmers, the staple of 1.3 billion poor people in the world, the main livelihood of farmers. Vietnam has a population of over 90 million, about 60% of its population lives on agriculture and has a long standing civilization. Of this, more than 80% of the population lives on rice. Rice is now the staple food that provides important energy and nutrition in daily life. [116] In Vietnam, according to the General Statistics Office (2015), the total rice area in 2015 will be over 7.8 million hectares, an increase of 18.7 thousand hectares in comparison with 2014; Average productivity was 57.7 quintals/ha, increasing by 0.2 quintals/ha compared to that of 2014; The output is estimated at 45.2 million tons of paddy, an increase of 241 thousand tons compared with 2014 [69].

At present, agricultural production in general and rice production in particular are facing many difficulties and challenges such as extreme weather phenomena caused by climate change, including hot and cold weather, drought, storms and floods leading to the area of rice plantation that are in danger of being reduced or converted due to unfavorable farming conditions such as irrigation water shortage, fertilizer costs, pest control, etc. The economic efficiency of rice production in general and high quality rice has not met the expectation of farmers.

In Quang Binh, rice is the main crop in production. In 2016, the proportion of agricultural production in the province accounts for 22.9% of the economic structure, of which rice production contributes 280,630 tons, accounting for 91.8% of total provincial food output (305,635 tons) [98].

In order to increase productivity and quality of rice, over the years, many advances and technical solutions in agricultural production have been applied such as integrated pest management (IPM), Integrated crop management (ICM), "3 decreases - 3 increases", "01 right - 5 reduction" ... and research on seeds, fertilizers and cultivation have been implemented to improve productivity and quality in production export rice, contributing to increase the value of rice in the province.

The System of Rice Intensification (SRI) is a combination of intensive rice cultivation methods such as transplants, transplant width, water regulation reasonably. The change in some of these major farming practices has promoted the inherent potential of the rice to promote the growth and development of rice to provide high yields while increasing the efficiency of land use and water [123].

The System of Rice Intensification (SRI) was put into trial from the winter-spring crop of 2012 - 2013 in Quang Binh. Initial results showed that the productivity of rice increased so that the total revenue was high, reduced input costs in production such as reduced pesticides, reduced seed and increased profitability compared to conventional farming. Normally, the demand for water for rice production is reduced ... [78]. SRI initially showed adaptation to extreme climatic factors and production difficulties due to the effects of climate change. In addition, many research results have shown that improved rice intensification system contributes to the sustainability
of agro-ecosystems, increases the quality of agricultural products, contributes to the building of organic agriculture in the 21 century and adaptation to climate change. However, in Quang Binh, SRI was only recommended from the general procedure and applied the model for replication for transplanted rice, there are no specific studies for rice directly sowing with cultivation methods. fertilizer, irrigation regime ... in the direction of SRI, especially for quality rice varieties to clarify the impact and suitability of SRI-oriented farming practices. Starting from the above reasons, we carry out the following topics: “Study on some technical practices following System of Rice Intensification (SRI) on quality rice production in Quang Binh province”

2. PURPOSE AND OBJECTIVES

2.1. The purpose of the topic
Identification of appropriate technical measures for improved rice production in the direction the System of Rice Intensification (SRI) in Quang Binh province to improve the technical process of rice production to improve rice yield and quality, economic efficiency and soil fertility.

2.2. The goal of the subject
Determining the amount of seed and fertilizer combinations suitable for some high quality rice varieties in the active and non-active area of irrigation in the direction of SRI to increase rice yield and quality, increase economic efficiency and improve soil fertility.
Identification of suitable irrigation regime in the direction of SRI in the area of irrigation water to achieve high productivity and economic efficiency.
To build a model of quality rice production towards SRI in the active and non-active areas of irrigation water in Quang Ninh and Bo Trach districts, Quang Binh province.

3. The meaning of science and practice

3.1. Scientific significance
It is the scientific basis for the proposed use of seed, fertilizer and irrigation for rice in the process of quality rice cultivation in the direction the System of Rice Intensification (SRI). Productivity, quality and reduced greenhouse gas emissions in Quang Binh.
This is a reference for similar research in Quang Binh and other provinces.

3.2. Practical significance
Complete the technical process of producing quality rice under the direction the System of Rice Intensification (SRI) in the active and non-active areas of irrigation water in Quang Binh.
Farmers are advised to use the appropriate amount of seed, balanced and rational fertilizer and suitable irrigation regime for quality rice to produce safe and ecologically friendly rice growing areas in Quang Binh.

4. Scope of research
The research focuses on a number of technical measures including seed sowing, combination of fertilizer (N, P, K, manure and microorganism of Song Gianh microorganism) under direct sowing conditions under the improved rice
intensification system (SRI), as the basis for building a model of quality rice production in the SRI direction.

The experiments on the amount of seed and fertilizer for the quality rice variety is carried out on alluvial soil not accreted annually in the irrigation watering area in An Ninh commune, Quang Ninh district and the non-active area for irrigation in the commune Great Trach, Bo Trach district. Irrigation experiment was conducted in the irrigation watering zone of An Ninh commune, Quang Ninh district, Quang Binh province.

The model of quality rice production was conducted in the irrigation watering area in An Ninh commune, Quang Ninh district and the non-active irrigation area in Dai Trach commune, Bo Trach district, Quang Binh province.

5. New contributions of the dissertation:

1. Results of the study indicated that (1) the appropriate rice seed quantities for direct seeding at irrigated area were 60 kg/ha for both HT1 and P6 varieties in the winter-spring season, 40 kg/ha (HT1) and 60 kg/ha (P6) in summer-autumn season; (2) and at rainfed area, the appropriate rice seed quantity was 60 kg/ha for both HT1 and P6 varieties in winter-spring and summer-autumn seasons.

2. Results of the study were also identified the suitable fertilizer combinations for two rice varieties (HT1 and P6) as follows: (1) 80 kg N + 45 kg P$_2$O$_5$ + 60 kg K$_2$O + 500 kg lime + 01 ton of Song Gianh biological organic fertilizer/ha in irrigated area and (2) 80 kg N + 45 kg P$_2$O$_5$ + 60 kg K$_2$O + 500 kg lime + 10 tons of farm yard manure/ha in rainfed area.

3. Result of the study was identified alternating wet and dry irrigation as a suitable method for rice in irrigated area with yield of 5.63 tons/ha (HT1) – 6.44 tons/ha (P6), economic efficiency increased 18.75% (HT1) and 22.80% (P6) compared with control.
CHAPTER 1. OVERVIEW OF RESEARCH ISSUES

1.1. RATIONALES
1.1.1. Overview of improved the system of rice intensification (SRI)
1.1.1.1. The concept of improved the system of rice intensification (SRI)
1.1.1.2. Principles of improved the system of rice intensification (SRI)
 a. For transplanted rice
 b. For straight sown rice
1.1.2. Advantages of SRI
 a. Positive impact on rice root system
 b. Increase effective branch number
 c. Reduction of pests on rice
 d. Reduce greenhouse gas emissions, respond to climate change in agricultural production
 e. Saving irrigation water
 f. Adapting to adverse weather conditions and extreme weather
1.1.2. Quality rice variety
1.1.3. The role of density in rice cultivation
1.1.4. The role of fertilizer for rice
 1.1.4.1. Nutritional needs of N, P, K of rice
 1.1.4.2. The role of N, P, K for rice
1.1.5. The role of water in rice
 1.1.5.1. Water needs of rice
 1.1.5.2. The role of water in rice
1.1.6. The scientific basis of applying some technical measures under the System of Rice Intensification (SRI)
1.1.7. Ecological zonation of rice production by irrigation
1.2. PRINCIPLES OF THESIS
1.2.1. Production of quality rice and rice in Vietnam and Quang Binh
 1.2.1.1. Situation of rice production and quality rice in Vietnam
 1.2.1.2. Situation of rice and rice production quality in Quang Binh
 1.2.1.3. Situation of rice production in Quang Ninh and An Ninh communes
 1.2.1.4. Situation of rice production in Bo Trach district and Dai Trach commune
1.2.2. The use of rice seed in Vietnam and Quang Binh
 1.2.2.1. In Viet Nam
 1.2.2.2. In Quang Binh
1.2.3. The use of fertilizer for rice in Vietnam and Quang Binh
 1.2.3.1. In Viet Nam
 1.2.3.2. In Quang Binh
1.2.4. The use of irrigation water for rice in Vietnam and Quang Binh
1.2.5. The situation of applying improved the System of Rice Intensification (SRI) in Vietnam and Quang Binh
 1.2.5.1. In Viet Nam
 1.2.5.2. In Quang Binh
1.3. WORKS OF RESEARCH IN THE WORLD AND VIETNAM

1.3.1. On the world
 1.3.1.1. Quality rice variety
 1.3.1.2. Density
 1.3.1.3. Fertilizer
 1.3.1.4. Irrigation water

1.3.2. In Viet Nam
 1.3.2.1. Quality rice variety
 1.3.2.2. Density
 1.3.2.3. Fertilizer
 1.3.2.4. Irrigation water
CHAPTER 2. SUBJECTS, CONTENTS AND METHODS RESEARCH

2.1. RESEARCH SUBJECTS

2.1.1. Experimental soil: Experiments were located on alluvial soil without annual compensation (Eutric Fluvisols) specializing in two rice crops in two areas of active water irrigation

2.1.2. Experimental plants: The cultivars used in the experiments were two HT1 and P6 quality rice cultivars that were being grown locally.

2.1.3. Fertilizer: Urea (46% N); supe (16% P$_2$O$_5$); KCl (60% K$_2$O); Molecular organics Gianh River: OM (15%), P$_2$O$_5$ effective (1%), humic acid (2.5%), Ca (1.0%), Mg (0.5%), S (0.3%), useful microorganisms (Bacillus: 1×10^6 CFU/g, Azotobacter: 1×10^6 CFU / g, Aspergillus sp: 1×10^6 CFU / g); Manure: produced locally (C: 29%, N: 0.7%, P$_2$O$_5$: 0.9%, K$_2$O: 0.2%); Powdered lime: mashed lime from shell, shell shell. This is a commonly used form of lime (50% CaO).

2.2. PLACE AND RESEARCH

2.2.1. Research location

- Active watering area: An Ninh commune, Quang Ninh district, with irrigation system and active irrigation field; Irrigation of irrigation water: Dai Trach commune, Bo Trach district, irrigation system does not meet the active irrigation, mainly based on the sky.

- Analysis of soil samples and fertilizer samples, CH$_4$ and N$_2$O emission gases were conducted at Faculty of Agriculture, Hue University of Agriculture and Forestry. Analysis of rice quality was carried out at the Department of Food and Foodstuffs Laboratory of Biochemistry.

2.2.2. Study Time: The study was conducted in the two winter seasons of 2013 - 2014 and the summer of fall 2014 for experiments on the amount of seed, fertilizer and irrigation. The rice production model is implemented in two winter seasons of 2014 - 2015 and summer of 2015.

2.3. RESEARCH CONTENT

Content 1: Study on the effect of seed volume on two HT1 and P6 quality rice cultivars in the direction of SRI on alluvial soil not accreted annually in the active and non-active area of irrigation water.

Content 2: Study on the effect of fertilizer combination on two quality rice varieties HT1 and P6 along the direction of SRI on alluvial soil not accreted annually in the active area and not actively watering.

Content 3: Study on the effect of irrigation regime on two HT1 and P6 quality rice cultivars along the SRI direction on alluvial soil not accreted annually in the active area of irrigation water.

Content 4: Building HT1 and P6 quality rice production models based on SRI on alluvial soil not accreted annually in the active and non-active areas of irrigation water in Quang Binh.

2.4. RESEARCH METHODS

2.4.1. Formula and experiment layout

2.4.1.1. Experiment 1: Effect of seed volume on SRI on two alluvial soils without sedimentation in the active and non-active zones
The experiments included 2 factors (two quality rice varieties: HT1 and P6 and 4 sowing varieties: 20, 40, 60 and 80 kg / ha). Total 8 experimental formulas. The experiments were arranged in Split-plot with 8 formulas, 3 replicates, of which rice variety (G1, G2) was arranged in large plot and seed size (L1, L2, L3 and L4) are arranged in small boxes. Small plot area is 15 m² and large area is 60 m². The technical process is guided by the Department of Agriculture and Rural Development of Quang Binh province in the direction of SRI. Water regulation: In the active area of irrigated water an intermixed dry drought (- 10 cm) is recommended in SRI (IRRI, 2009). In irrigated areas irrigated, the irrigation method completely depends on the water of the sky.

2.4.1.2. Experiment 2: The effect of fertilizer on two quality rice cultivars towards SRI on alluvial soil is not compensated annually in the active and non-active area of irrigation water.

Experiment was conducted with 2 factors (two quality rice varieties and five fertilizer formulas). Total number of experimental formulas was 10. The experiment was arranged in Split-plot with 10 formulas, 3 replicates, of which rice variety (G1, G2) was arranged in cell Large and fertilizer (P1, P2, P3, P4, P5) are arranged in small boxes. Small plot area is 15 m² and large area is 75 m². The proposed formulas are based on the guidelines on the amount and form of fertilizer for rice according to national technical standards for the cultivation value and use of rice varieties (QCVN 01-55: 2011/BBNPTNT). Under the guidance of the Department of Agriculture and Rural Development of Quang Binh province (100 kg N + 60 kg P₂O₅ + 80 kg K₂O + 0,5 ton of Gianh microbial organic fertilizer/ha + 500 kg lime/ha) and a practical investigation of the amount of fertilizer used by farmers at the site (100 kg N + 60 kg P₂O₅ + 80 kg K₂O/ha). Water-sensing experiment 1

2.4.1.3. Experiment 3: Effect of SRI irrigation regime on quality of alluvial soil in irrigated area in irrigated area

Experiment 2 factors (two quality rice and two watering). The basis of experimental design based on irrigation methods of farmers is frequent flood irrigation (T1), dry mixed irrigation (- 10 cm) recommended in SRI (IRRI, 2009). T2). The total number of experimental formulas was 4. The experiment was arranged in split-plot style with 4 formulas and 3 replicates, in which the irrigation regime (T1, T2) was arranged. Large and seedlings (G1, G2) are arranged in a small box. The seed size and technical measures applied in the SRI direction. The amount of fertilizer by the Department of Agriculture and Rural Development of Quang Binh (100 kg N + 60 kg P₂O₅ + 80 kg K₂O + 0,5 ton Gianh organic fertilizer/ha + 500 kg lime/ha) and cashew nut. The actual quantity of fertilizer used for quality rice of the farmers at the study sites (100 kg N + 60 kg P₂O₅ + 80 kg K₂O / ha)

2.4.1.4. Modeling of rice production

Based on the best results of the three experiments, the model of quality rice production in the active water zone was formulated. It consists of 2 formulas: CT1 (100) N + 60 kg P₂O₅ + 80 kg K₂O + 500 kg lime/ha (the recommended amount of conventional cultivation), seed volume of 80 kg / ha and frequent flooding. HT1 (summer-autumn), P6 (winter-spring). CT2 (MH): 80 kg N + 45 kg P₂O₅ + 60 kg
K2O + 500 kg lime per hectare + 01 ton of Gianh microbial organic fertilizer per hectare, 60 kg/ha seedlings (P6, spring-winter crop), wet dry irrigation (-10 cm).

* Model of quality rice production in non-water areas, including 2 formulas: CT1 (100) N + 60 kg P2O5 + 80 kg K2O + 500 kg lime/ha conventional farming), 80 kg seedling/ha (control). HT1 (summer-autumn), P6 (winter-spring). L2: 80 kg N + 45 kg P2O5 + 60 kg K2O + 500 kg lime/ha + 10 tons of manure/ha, seed volume 60 kg/ha. HT1 (summer-autumn), P6 (winter-spring). Watering mode depends on the water.

SRI technical guidelines and monitoring criteria are applied in accordance with national technical regulations on value of cultivation and value of rice varieties, QCVN 01-55: 2011/BNNPTNT.

2.4.2. Indicators and monitoring methods

Indicators and monitoring methods are in line with the national technical regulations on the cultivation value and use of rice varieties (QCVN 01-55: 2011/BNNPTNT) [15]. For pests and diseases under investigation QCVN 01-38: 2010/BNNPTNT and national standard for rice detection pesticides: QCVN 01-166:2014/BNNPTNT [14], [16]. Soil chemistry is analyzed according to the Vietnamese standard method. Gas indicators: Proceed with the use of specialized tools. Gas Analyzer (GC) - SRI6810C.

2.4.2.1. Indicators on the growth and development of rice: Total time of growth, development; last tree height; Branch targets: Maximum number of branches, effective branch numbers, effective branch rates. Targets for root growth: Number of roots; root diameter; Total root length / tree: Weigh the root volume of 01 m (m1, gram) and weight the total root of 3 rice (m2, gram). Total root length/tree (m) = m2/m1/3. Indicators of productivity: Factors of productivity, theoretical productivity, net productivity.

2.4.2.2. Evaluation and scoring at the time of incidence of major pests in rice include:

- Cnaphadocrosis medinalis Guenee,
- Nilaparvata lugens Stal.,
- Halothrips aculeatus Fabricius,
- Scirpophaga incertulas Walk,
- Rhizoctonia solani,
- Pyricularia oryzae.

2.4.2.3. Land standards:

- pHKCl;
- OC; N total number; P2O5 total; K2O total (TCVN 8660-2011).

2.4.2.4. Indicators of rice quality:

According to the TCVN on the rate of rice flip, the rate of rice, the rate of milled rice, protein content, evaluation of sensory rice.

2.4.2.5. Indicators of economic efficiency:

- profit, VCR (value cost ratio), rate of profit increase.

2.4.2.6. Monitoring and measurement of CH4 and N2O gas

Collection of specimens in the field by using sealed containers from 2 weeks after sowing to the formation of strong seeds of rice. Place one aerosol container in each of the test plots. Collection of gas samples in 4 stpt periods of rice: start to branch, do, ripen, ripen (nine milk) at 4 times 0, 10, 20, 30 minutes after closing the barrel. Collection time is from 8 h - 10 h.

Gas indicators: Proceed with the use of specialized tools. Gas Analyzer (GC) - SRI6810C, incorporating a computer.

Indicators: Emissions (mg / m 2 / h), total CH4 and N2O emissions per season (g / m 2), potential for global warming
2.4.2.7. **Indicator of irrigation water:** Irrigation water for rice in the process of growth and development.

2.4.3. **Data processing methods**

Data processing included averaging, one factor analysis and two factor analysis, LSD_{0.05} calculation using Statistic 10.0 software. Graphing, charting software Excel.

2.5. **CLIMATE CHANGE:** Climate change and the impact of climate factors on basic experiments and production patterns from 2014 to 2016.
CHAPTER 3
RESULTS AND DISCUSSION

3.1. IMPROVEMENT OF SEEDS OF TWO RICE VARIETIES OF HT1 AND P6 ACCORDING TO SRI IN ACTIVE REGION AND WITHOUT WATER ACTIVITY

3.1.1. Effect of seed volume on tillering and final height of two HT1 and P6 rice varieties

Table 3.1. Effect of seed volume on tillering ability and final tree height of two quality rice varieties

<table>
<thead>
<tr>
<th>Variety</th>
<th>Seed size (kg/ha)</th>
<th>Winter - spring season 2013 – 2014</th>
<th>Summer - autumn season 2014</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Maximum number of branches effective (branch)</td>
<td>Effective branch rate (%)</td>
<td>Last tree height (cm)</td>
</tr>
<tr>
<td>HT1</td>
<td>20</td>
<td>5.90<sup>ab</sup> 4.13<sup>abc</sup> 75.54 104.78<sup>a</sup></td>
<td>5.67<sup>c</sup> 4.03<sup>bc</sup> 71.08 100.52<sup>a</sup></td>
</tr>
<tr>
<td>(Control)</td>
<td>40</td>
<td>5.40<sup>bc</sup> 3.97<sup>bc</sup> 74.14 103.39<sup>b</sup></td>
<td>6.40<sup>ab</sup> 4.60<sup>a</sup> 72.12 98.20<sup>b</sup></td>
</tr>
<tr>
<td></td>
<td>60</td>
<td>5.23<sup>c</sup> 4.03<sup>bc</sup> 77.05 102.17<sup>bc</sup></td>
<td>5.93<sup>abc</sup> 4.37<sup>ab</sup> 73.69 97.45<sup>b</sup></td>
</tr>
<tr>
<td></td>
<td>80 (Control)</td>
<td>4.97<sup>c</sup> 3.27<sup>d</sup> 65.98 101.56<sup>cd</sup></td>
<td>5.73<sup>c</sup> 3.40<sup>d</sup> 59.44 96.89<sup>b</sup></td>
</tr>
<tr>
<td>P6</td>
<td>20</td>
<td>6.30<sup>a</sup> 4.70<sup>a</sup> 77.90 99.45<sup>cd</sup></td>
<td>6.50<sup>a</sup> 4.53<sup>ab</sup> 69.85 95.11<sup>c</sup></td>
</tr>
<tr>
<td>(Control)</td>
<td>40</td>
<td>5.70<sup>bc</sup> 4.47<sup>ab</sup> 78.46 98.72<sup>d</sup></td>
<td>6.27<sup>abc</sup> 4.47<sup>ab</sup> 71.34 94.25<sup>c</sup></td>
</tr>
<tr>
<td></td>
<td>60</td>
<td>5.50<sup>bc</sup> 4.40<sup>ab</sup> 80.09 97.11<sup>e</sup></td>
<td>5.97<sup>abc</sup> 4.27<sup>ab</sup> 71.52 93.81<sup>c</sup></td>
</tr>
<tr>
<td></td>
<td>80 (Control)</td>
<td>5.43<sup>bc</sup> 3.83<sup>cd</sup> 70.64 96.45<sup>e</sup></td>
<td>5.80<sup>bc</sup> 3.73<sup>cd</sup> 65.09 92.19<sup>d</sup></td>
</tr>
<tr>
<td>LSD<sub>0.05</sub></td>
<td>0.84</td>
<td>0.59</td>
<td>3.03</td>
</tr>
</tbody>
</table>

2. Zone of irrigation water (Bo Trach district)

<table>
<thead>
<tr>
<th>Variety</th>
<th>Seed size (kg/ha)</th>
<th>Winter - spring season 2013 – 2014</th>
<th>Summer - autumn season 2014</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Maximum number of branches effective (branch)</td>
<td>Effective branch rate (%)</td>
<td>Last tree height (cm)</td>
</tr>
<tr>
<td>HT1</td>
<td>20</td>
<td>4.73<sup>a</sup> 3.33<sup>ab</sup> 70.42 105.78<sup>a</sup></td>
<td>4.80<sup>a</sup> 3.47<sup>a</sup> 72.22 101.56<sup>a</sup></td>
</tr>
<tr>
<td>(Control)</td>
<td>40</td>
<td>4.47<sup>ab</sup> 3.03<sup>bc</sup> 67.91 104.67<sup>ab</sup></td>
<td>4.50<sup>abc</sup> 3.17<sup>ab</sup> 70.37 99.94<sup>ab</sup></td>
</tr>
<tr>
<td></td>
<td>60</td>
<td>4.17<sup>b</sup> 2.93<sup>bc</sup> 70.40 103.38<sup>b</sup></td>
<td>4.27<sup>bc</sup> 3.13<sup>ab</sup> 73.44 98.72<sup>bc</sup></td>
</tr>
<tr>
<td></td>
<td>80 (Control)</td>
<td>4.03<sup>b</sup> 2.73<sup>c</sup> 67.77 103.18<sup>bc</sup></td>
<td>4.17<sup>bc</sup> 2.93<sup>b</sup> 70.40 97.06<sup>cd</sup></td>
</tr>
<tr>
<td>P6</td>
<td>20</td>
<td>4.70<sup>a</sup> 3.43<sup>a</sup> 72.59 101.64<sup>c</sup></td>
<td>4.60<sup>ab</sup> 3.23<sup>ab</sup> 70.22 96.44<sup>cd</sup></td>
</tr>
<tr>
<td>(Control)</td>
<td>40</td>
<td>4.50<sup>ab</sup> 3.23<sup>ab</sup> 71.78 99.18<sup>d</sup></td>
<td>4.46<sup>abc</sup> 3.10<sup>b</sup> 69.51 94.89<sup>de</sup></td>
</tr>
<tr>
<td></td>
<td>60</td>
<td>4.30<sup>ab</sup> 3.17<sup>ab</sup> 73.72 97.66<sup>de</sup></td>
<td>4.23<sup>bc</sup> 3.03<sup>b</sup> 71.63 93.78<sup>c</sup></td>
</tr>
<tr>
<td></td>
<td>80 (Control)</td>
<td>4.13<sup>b</sup> 2.97<sup>bc</sup> 71.85 97.1<sup>c</sup></td>
<td>4.03<sup>c</sup> 2.83<sup>b</sup> 70.22 93.44<sup>c</sup></td>
</tr>
<tr>
<td>LSD<sub>0.05</sub></td>
<td>0.47</td>
<td>0.39</td>
<td>1.71</td>
</tr>
</tbody>
</table>

Note: Different letters in the same column represent a significant difference of 0.05.
Number of branches, effective branching rate: In the two study areas, the number of high seeded varieties has lower number of branches than the lower ones. High seedling density, high plant density should be competing for nutrients and obscuring light, limiting sprouting growth. In the same variety, there is no significant difference in the number of branches when cultivating in two different seasons, indicating that the crop does not affect the number of branches of a variety.

Final tree height: The amount of seed that affects the final tree height, the low seed yield (20 - 40 kg/ha) gives the final height higher than the control (80 kg/ha). HT1 had the final height higher than that of P6. In the active zone of irrigation water, the height of the tree was higher in the non-active condition of irrigation water in the two experimental varieties.

3.1.2. Effect of seed volume on yield and yield components of two HT1 and P6 quality cultivars

3.1.2.1. Winter - Spring 2013 - 2014

Table 3.2. Effect of seed volume on yield and yield components of two quality rice varieties Winter - spring season 2013 - 2014

<table>
<thead>
<tr>
<th>Variety</th>
<th>Seed size (kg/ha)</th>
<th>Number of panicles/m²</th>
<th>Number of seeds/panicles</th>
<th>Number of seeds fine/panicle</th>
<th>1000 seed weight (gram)</th>
<th>Productivity Theory (tons/ha)</th>
<th>Productivity Paddy (tons/ha)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Active zone for irrigation (Quang Ninh district)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HT1 (Control)</td>
<td>20</td>
<td>270,4<sup>a</sup></td>
<td>111,2<sup>bcd</sup></td>
<td>97,2<sup>bcd</sup></td>
<td>22,95<sup>c</sup></td>
<td>6,03<sup>d</sup></td>
<td>4,92<sup>f</sup></td>
</tr>
<tr>
<td></td>
<td>40</td>
<td>282,7<sup>c</sup></td>
<td>109,4<sup>cd</sup></td>
<td>96,6<sup>bcd</sup></td>
<td>22,70<sup>c</sup></td>
<td>6,20<sup>d</sup></td>
<td>5,51<sup>e</sup></td>
</tr>
<tr>
<td></td>
<td>60</td>
<td>314,1<sup>b</sup></td>
<td>110,6<sup>bcd</sup></td>
<td>95,3<sup>cd</sup></td>
<td>22,21<sup>d</sup></td>
<td>6,68<sup>bc</sup></td>
<td>5,94<sup>c</sup></td>
</tr>
<tr>
<td>80 (Control)</td>
<td>20</td>
<td>308,1<sup>c</sup></td>
<td>107,7<sup>d</sup></td>
<td>92,3<sup>d</sup></td>
<td>22,01<sup>d</sup></td>
<td>6,26<sup>cd</sup></td>
<td>5,73<sup>d</sup></td>
</tr>
<tr>
<td>P6</td>
<td>20</td>
<td>287,6<sup>a</sup></td>
<td>120,7<sup>a</sup></td>
<td>103,4<sup>a</sup></td>
<td>23,63<sup>ab</sup></td>
<td>7,03<sup>b</sup></td>
<td>5,45<sup>e</sup></td>
</tr>
<tr>
<td></td>
<td>40</td>
<td>298,3<sup>cd</sup></td>
<td>118,2<sup>ab</sup></td>
<td>102,3<sup>ab</sup></td>
<td>23,47<sup>ab</sup></td>
<td>7,17<sup>ab</sup></td>
<td>6,04<sup>c</sup></td>
</tr>
<tr>
<td></td>
<td>60</td>
<td>320,8<sup>a</sup></td>
<td>118,2<sup>abc</sup></td>
<td>100,2<sup>abc</sup></td>
<td>23,38<sup>bc</sup></td>
<td>7,51<sup>a</sup></td>
<td>6,69<sup>a</sup></td>
</tr>
<tr>
<td>80 (Control)</td>
<td>313,4<sup>b</sup></td>
<td>113,8<sup>ab</sup></td>
<td>96,7<sup>bcd</sup></td>
<td>23,06<sup>cd</sup></td>
<td>6,99<sup>b</sup></td>
<td>6,26<sup>b</sup></td>
<td></td>
</tr>
<tr>
<td>LSD<sub>0.05</sub></td>
<td>5.1</td>
<td>8.4</td>
<td>5.9</td>
<td>0.43</td>
<td>0.49</td>
<td>0.26</td>
<td></td>
</tr>
</tbody>
</table>

2. Zone of irrigation water (Bo Trach district)

HT1 (Control)	20	228,2^f	103,7^{ab}	93,6^b	22,90^a	4,89^f	4,12^g
	40	241,4^e	101,3^{bc}	92,3^{cd}	23,12^a	5,15^{ef}	4,43^f
	60	261,8^c	99,3^e	91,0^{de}	23,27^a	5,54^{cd}	5,31^{bc}
80 (Control)	251,3^{de}	98,6^e	89,2^e	23,21^a	5,42^{de}	5,14^{cd}	
P6	20	256,6^{cd}	105,8^a	96,9^a	23,37^a	5,81^{bc}	4,73^e
	40	276,4^b	104,7^a	96,1^{ab}	23,16^a	6,16^{ab}	5,02^d
	60	296,2^a	101,1^{bc}	95,1^{ab}	22,90^a	6,45^a	5,60^a
80 (Control)	283,9^b	103,4^{ab}	94,8^{abc}	23,27^a	6,26^a	5,39^b	
LSD_{0.05}	13,3	2.8	2.9	0.97	0.35	0.20	

Note: Different letters in the same column represent a significant difference of 0.05.

* Active zone for irrigation: Actual yield: Compared with the control (80 kg/ha), the highest yield was 60 kg/ha (5,94 tons/ha - HT1, 6,69 tons/ha - P6), lowest at 20 kg/ha: from 4,92 (HT1) to 5,45 tons/ha (P6).

* Zone of irrigation water: The amount of seedlings of 20 kg/ha, 40 kg/ha with
YY was not high and lower than that of irrigation water. 60 kg seedlings and 80 kg seedlings respectively gave the highest seed yield. The coefficients in the treatments are lower than those in the irrigation water.

3.1.2.2. Summer - autumn season 2014

Table 3.3. Effect of seed volume on yield and yield components of two HT1 and P6 quality cultivars in Summer - autumn season 2014

<table>
<thead>
<tr>
<th>Variety</th>
<th>Seed size (kg/ha)</th>
<th>Number of panicles/m2</th>
<th>Number of seeds/panicles</th>
<th>Number of seeds fine/panicles</th>
<th>1000 seed weight (gram)</th>
<th>Productivity Theory (tons/ha)</th>
<th>Productivity Paddy (tons/ha)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HT1 (Control)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>289,4c</td>
<td>113,3ab</td>
<td>99,2bc</td>
<td>21,58c</td>
<td>6,49c</td>
<td>4,84d</td>
<td></td>
</tr>
<tr>
<td>40</td>
<td>329,6a</td>
<td>104,4c</td>
<td>95,4d</td>
<td>22,40d</td>
<td>7,04ab</td>
<td>5,77a</td>
<td></td>
</tr>
<tr>
<td>60</td>
<td>320,8b</td>
<td>106,2bc</td>
<td>97,0cd</td>
<td>21,56f</td>
<td>6,70bc</td>
<td>5,55b</td>
<td></td>
</tr>
<tr>
<td>80 (Control)</td>
<td>308,6c</td>
<td>111,0abc</td>
<td>98,4bc</td>
<td>21,98e</td>
<td>6,65bc</td>
<td>5,22c</td>
<td></td>
</tr>
<tr>
<td>P6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>268,6a</td>
<td>120,4d</td>
<td>103,6a</td>
<td>23,69a</td>
<td>6,59c</td>
<td>4,93d</td>
<td></td>
</tr>
<tr>
<td>40</td>
<td>278,7f</td>
<td>116,2ab</td>
<td>101,2ab</td>
<td>23,55a</td>
<td>6,64c</td>
<td>5,16c</td>
<td></td>
</tr>
<tr>
<td>60</td>
<td>311,2c</td>
<td>110,1bc</td>
<td>98,1cd</td>
<td>23,32b</td>
<td>7,12a</td>
<td>5,67ab</td>
<td></td>
</tr>
<tr>
<td>80 (Control)</td>
<td>294,6d</td>
<td>114,6ab</td>
<td>99,1bc</td>
<td>23,21b</td>
<td>6,78bc</td>
<td>5,31c</td>
<td></td>
</tr>
<tr>
<td>LSD$_{0.05}$</td>
<td>4.4</td>
<td>10.2</td>
<td>3.3</td>
<td>0.50</td>
<td>0.30</td>
<td>0.16</td>
<td></td>
</tr>
</tbody>
</table>

2. Zone of irrigation water (Bo Trach district)							

HT1 (Control)							
20	260,1c	102,7d	94,7abc	22,53abc	5,55bc	4,62d	
40	274,4b	103,1cd	93,6bcd	22,48bc	5,77cd	4,93c	
60	291,7a	106,2bc	93,2bcd	22,30bc	6,06b	5,24b	
80 (Control)	289,2a	107,6b	91,6d	22,14c	5,87bc	5,11b	
P6							
20	251,2d	105,7bcd	93,1cd	23,18a	5,36e	4,61d	
40	259,4b	107,9b	93,1cd	23,02ab	5,56cde	4,87c	
60	287,3a	113,1a	97,2a	23,13ab	6,46a	5,45a	
80 (Control)	276,4b	114,7a	96,1ab	23,06ab	6,13b	5,15b	
LSD$_{0.05}$	8.1	4.5	3.2	0.83	0.31	0.13	

Note: Different letters in the same column represent a significant difference of 0.05.

The data in Table 3.3 shows that HT1 cultivar for productivity paddy is higher than that in the winter - spring season 2013 - 2014. In contrast, P6 variety has lower productivity paddy than in the winter - spring season 2013 - 2014. The potential advantage for yield and productivity paddy is highest At seed volume of 40 kg/ha (HT1) and 60 kg/ha (P6) in the active area. In non - active areas, the yield advantage
was 60 kg/ha in both cultivars. In the summer - autumn season 2014, the HT1 variety promotes productivity advantages over the P6 variety and vice versa in the winter - spring season 2013 - 2014.
3.1.3. Effect of seed volume on economic efficiency of two HT1 and P6 quality rice varieties

Table 3.4. Economic efficiency of seed volumes for two quality rice varieties

<table>
<thead>
<tr>
<th>Seed size</th>
<th>Winter - spring season 2013 – 2014</th>
<th>Summer - autumn season 2014</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Variety HT1</td>
<td>Variety P6</td>
</tr>
<tr>
<td></td>
<td>Profit (1000 vnd/ha)</td>
<td>Value cost ratio</td>
</tr>
<tr>
<td>20</td>
<td>16.788,0 2,07</td>
<td>19.806,2 2,27</td>
</tr>
<tr>
<td>40</td>
<td>20.207,8 2,26</td>
<td>23.226,7 2,45</td>
</tr>
<tr>
<td>60</td>
<td>22.472,8 2,37</td>
<td>27.030,1 2,64</td>
</tr>
<tr>
<td>80 (Control)</td>
<td>20.751,2 2,23</td>
<td>23.892,8 2,42</td>
</tr>
<tr>
<td>20</td>
<td>8.559,5 1,53</td>
<td>12.219,5 1,76</td>
</tr>
<tr>
<td>40</td>
<td>10.019,5 1,61</td>
<td>13.559,5 1,82</td>
</tr>
<tr>
<td>60</td>
<td>14.899,5 1,88</td>
<td>16.639,5 1,98</td>
</tr>
<tr>
<td>80 (Control)</td>
<td>13.459,5 1,78</td>
<td>14.979,5 1,86</td>
</tr>
</tbody>
</table>

1. Active zone for irrigation (Quang Ninh district)

2. Zone of irrigation water (Bo Trach district)

In the winter - spring season 2013 - 2014, the Value cost ratio of the irrigation watering zone showed that 60 kg/ha per hectare in P6 variety gave higher economic efficiency than HT1 seed. Similarly, in the summer - autumn season 2014, the Value cost ratio at the seed sowing rate of 40 kg/ha on the HT1 variety was higher at 60 kg/ha seed size in the P6 variety, thus the economic advantage of the HT1 variety was that of the seed sown 40 kg/ha. In the summer - autumn season 2014, the Value cost ratio seed of HT1 is higher than that of P6, in the winter - spring season 2013-2014, the P6 variety is higher than that of HT1 and the lowest is 60 kg/ha. Economic viability belongs to HT1 variety in the autumn - autumn season 2014 and P6 variety in the winter - spring season 2013 - 2014.

Summary 1: The amount of seedlings of 20 kg/ha - 80 kg/ha all affected the plantation, the tillering, the final tree height, some indicators of roots. The main threats are the active and non - active irrigation of two rice varieties, HT1 and P6. In the winter - spring 2013 - 2014, the highest yield was 60 kg/ha from 5,94 tons/ha (HT1) to 6,69 tons/ha (P6) in the irrigated area and from 5,31 tons/ha (HT1) to 5,60 tons/ha (P6) on non - active areas of irrigation water. In the summer - autumn season 2014, the highest yield was 40 kg/ha (5,77 tons/ha, HT1) and 60 kg/ha (5,67 tons/ha,
P6) irrigation, seed volume 60 kg/ha with the yield from 5,24 (HT1) to 5,45 tons/ha (P6) in the non-active area irrigation.
3.2. EFFECTS OF FERTILIZER FERTILIZERS TO HT1 AND P6 QUALITY RICE VARIABLES UNDER SRI IN ACTIVE REGION AND WITHOUT WATER ACTIVITY

3.2.1. Effects of fertilizer combinations on tillering and final height of two HT1 and P6 quality rice varieties

Table 3.5. Effects of fertilizer combinations on the ability of tillering and final height of two quality rice varieties

<table>
<thead>
<tr>
<th>Variety</th>
<th>Fertilizer</th>
<th>Winter - spring season 2013 - 2014</th>
<th>Summer - autumn season 2014</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Maximum number of branches (branch)</td>
<td>Number of branches effective (branch)</td>
</tr>
<tr>
<td>HT1</td>
<td>P1 (Control)</td>
<td>4.87c 3.07c 63.01 100.89c</td>
<td>4.73f 3.37f 71.13</td>
</tr>
<tr>
<td></td>
<td>P2</td>
<td>5.20bcd 3.97d 76.35 101.94bc</td>
<td>5.87d 4.27e 72.73</td>
</tr>
<tr>
<td></td>
<td>P3</td>
<td>5.40abcd 4.17cd 77.22 102.50ab</td>
<td>5.97cd 4.37de 73.18</td>
</tr>
<tr>
<td></td>
<td>P4</td>
<td>5.47abcd 4.23cd 77.33 102.94ab</td>
<td>6.27b 4.63abc 73.94</td>
</tr>
<tr>
<td></td>
<td>P5</td>
<td>5.67ab 4.40bc 77.60 103.39a</td>
<td>6.40ab 4.83a 75.52</td>
</tr>
<tr>
<td>P6</td>
<td>P1 (Control)</td>
<td>4.67d 3.37c 72.14 96.22c</td>
<td>5.10c 3.33f 65.64</td>
</tr>
<tr>
<td></td>
<td>P2</td>
<td>5.43abcd 4.37bc 80.43 96.50e</td>
<td>5.93cd 4.23e 71.29</td>
</tr>
<tr>
<td></td>
<td>P3</td>
<td>5.63abc 4.43bc 78.64 97.11de</td>
<td>6.17bc 4.43cde 71.89</td>
</tr>
<tr>
<td></td>
<td>P4</td>
<td>5.90ab 4.57ab 77.46 97.56de</td>
<td>6.30ab 4.53bcd 71.96</td>
</tr>
<tr>
<td></td>
<td>P5</td>
<td>6.10a 4.80a 78.69 98.33d</td>
<td>6.53a 4.73ab 72.45</td>
</tr>
<tr>
<td></td>
<td>LSD0.05</td>
<td>0.87 0.31</td>
<td>1.51</td>
</tr>
</tbody>
</table>

1. Active zone for irrigation (Quang Ninh district)

2. Zone of irrigation water (Bo Trach district)

Note: Different letters in the same column represent a significant difference of 0.05.
In the active zone of irrigation water and the non-active area of irrigation water: Maximum number of branches and effective number of branches increased in accordance with fertilizer formulas from P1 to P5, compared with control P1, the formula has high branch number More and more meaningful. In general, the proportion of effective branches in the P4, P5 formula was higher than that of the other formulas and controls.

3.2.2. Effects of fertilizer combinations on yield and yield components of two HT1 and P6 quality cultivars

3.2.2.1. Winter - spring season 2013 - 2014

Table 3.6. Effects of fertilizer combinations on the components of yield and yield of two quality rice varieties Winter - spring season 2013 – 2014

<table>
<thead>
<tr>
<th>Variety</th>
<th>Fertilizer</th>
<th>Number of panicles/m²</th>
<th>Number of seeds/panicles</th>
<th>Number of seeds fine/panicles</th>
<th>1000 seed weight (gram)</th>
<th>Productivity Theory (tons/ha)</th>
<th>Productivity Paddy (tons/ha)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Active zone for irrigation (Quang Ninh district)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HT1</td>
<td>P1 (Control)</td>
<td>295.4f</td>
<td>104.3f</td>
<td>82.9g</td>
<td>22.11 d</td>
<td>5.41 f</td>
<td>5.14 g</td>
</tr>
<tr>
<td></td>
<td>P2</td>
<td>301.7e</td>
<td>108.7e</td>
<td>95.9e</td>
<td>22.21 d</td>
<td>6.42 de</td>
<td>5.54 f</td>
</tr>
<tr>
<td></td>
<td>P3</td>
<td>303.1e</td>
<td>110.4e</td>
<td>98.4de</td>
<td>22.81 c</td>
<td>6.81 d</td>
<td>5.73 e</td>
</tr>
<tr>
<td></td>
<td>P4</td>
<td>317.6d</td>
<td>113.7d</td>
<td>104.4bc</td>
<td>22.81 c</td>
<td>7.56 c</td>
<td>6.37 d</td>
</tr>
<tr>
<td></td>
<td>P5</td>
<td>323.8bc</td>
<td>115.9bc</td>
<td>107.1ab</td>
<td>23.96 b</td>
<td>8.31 b</td>
<td>6.58 bc</td>
</tr>
<tr>
<td></td>
<td>P6</td>
<td>307.1f</td>
<td>115.2bc</td>
<td>89.9f</td>
<td>22.15 d</td>
<td>6.12 e</td>
<td>5.69 ef</td>
</tr>
<tr>
<td></td>
<td>P1 (Control)</td>
<td>307.1f</td>
<td>115.2bc</td>
<td>89.9f</td>
<td>22.15 d</td>
<td>6.12 e</td>
<td>5.69 ef</td>
</tr>
<tr>
<td></td>
<td>P2</td>
<td>318.4cd</td>
<td>118.7b</td>
<td>101.2cd</td>
<td>22.81 c</td>
<td>7.35 c</td>
<td>6.38 cd</td>
</tr>
<tr>
<td></td>
<td>P3</td>
<td>322.3cd</td>
<td>119.3b</td>
<td>103.7bc</td>
<td>23.16 c</td>
<td>7.74</td>
<td>6.65 b</td>
</tr>
<tr>
<td></td>
<td>P4</td>
<td>328.7ab</td>
<td>121.6a</td>
<td>108.6ab</td>
<td>23.78 b</td>
<td>8.48 b</td>
<td>6.94 a</td>
</tr>
<tr>
<td></td>
<td>P5</td>
<td>331.4a</td>
<td>122.4a</td>
<td>110.1a</td>
<td>24.63 a</td>
<td>8.99 a</td>
<td>7.08 a</td>
</tr>
<tr>
<td></td>
<td>LSD0.05</td>
<td>6.5</td>
<td>4.3</td>
<td>5.2</td>
<td>0.42</td>
<td>0.48</td>
<td>0.26</td>
</tr>
<tr>
<td>2. Zone of irrigation water (Bo Trach district)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HT1</td>
<td>P1 (Control)</td>
<td>245.3f</td>
<td>97.8f</td>
<td>86.2c</td>
<td>21.97 d</td>
<td>4.66 g</td>
<td>4.39 f</td>
</tr>
<tr>
<td></td>
<td>P2</td>
<td>259.7e</td>
<td>100.3ef</td>
<td>92.6d</td>
<td>22.93bc</td>
<td>5.52 f</td>
<td>5.18 d</td>
</tr>
<tr>
<td></td>
<td>P3</td>
<td>265.2de</td>
<td>101.3e</td>
<td>93.4cd</td>
<td>23.10bc</td>
<td>5.77 e</td>
<td>5.27 cd</td>
</tr>
<tr>
<td></td>
<td>P4</td>
<td>267.6d</td>
<td>101.9de</td>
<td>94.7cd</td>
<td>23.23ab</td>
<td>5.96 de</td>
<td>5.38 c</td>
</tr>
<tr>
<td></td>
<td>P5</td>
<td>275.6c</td>
<td>105.7abc</td>
<td>97.2bc</td>
<td>23.33ab</td>
<td>6.42 c</td>
<td>5.67 ab</td>
</tr>
<tr>
<td></td>
<td>P1 (Control)</td>
<td>277.2e</td>
<td>93.9g</td>
<td>87.4e</td>
<td>22.23cd</td>
<td>5.38 f</td>
<td>4.69 e</td>
</tr>
<tr>
<td></td>
<td>P2</td>
<td>285.7b</td>
<td>102.1cde</td>
<td>93.5cd</td>
<td>22.97bc</td>
<td>6.14 d</td>
<td>5.37 c</td>
</tr>
<tr>
<td></td>
<td>P3</td>
<td>290.2ab</td>
<td>105.2bcd</td>
<td>95.5cd</td>
<td>23.43ab</td>
<td>6.49 c</td>
<td>5.42 c</td>
</tr>
<tr>
<td></td>
<td>P4</td>
<td>297.8a</td>
<td>108.9a</td>
<td>99.9ab</td>
<td>23.67ab</td>
<td>7.03 b</td>
<td>5.57 b</td>
</tr>
<tr>
<td></td>
<td>P5</td>
<td>301.3a</td>
<td>107.9ab</td>
<td>102.1a</td>
<td>23.90a</td>
<td>7.35 a</td>
<td>5.84 a</td>
</tr>
<tr>
<td></td>
<td>LSD0.05</td>
<td>9.6</td>
<td>3.6</td>
<td>3.8</td>
<td>0.87</td>
<td>0.18</td>
<td>0.17</td>
</tr>
</tbody>
</table>

Note: Different letters in the same column represent a significant difference of 0.05.
Table 3.6 shows that: Fertilizer mix 80 - 100 kg N + 45 - 60 kg P₂O₅ + 60 - 80 kg K₂O + 10 tons of manure (or 01 ton of organic fertilizer Gianh river) Control formula P1 (100 kg N + 60 kg P₂O₅ + 80 kg K₂O). The P4 formula outperforms the remaining formulas in the active irrigation zone, similarly in the non-active irrigation zone as the P5 formula. P6 variety is superior to HT1 due to higher rate of productivity theory and productivity paddy.

3.2.2.2. Summer - autumn season 2014

Table 3.7. Effects of fertilizer combinations on the components of yield and yield of two quality rice varieties Summer - autumn season 2014

<table>
<thead>
<tr>
<th>Variety</th>
<th>Fertilizer</th>
<th>Number of panicles/m²</th>
<th>Number of seeds/panicles</th>
<th>Number of seeds fine/panicles</th>
<th>1000 seed weight (gram)</th>
<th>Productivity Theory (tons/ha)</th>
<th>Productivity Paddy (tons/ha)</th>
</tr>
</thead>
<tbody>
<tr>
<td>HT1</td>
<td>P1 (Control)</td>
<td>305,4f</td>
<td>101,3g</td>
<td>91,6g</td>
<td>20,98e</td>
<td>5,87g</td>
<td>4,99e</td>
</tr>
<tr>
<td></td>
<td>P2</td>
<td>315,7b</td>
<td>105,2f</td>
<td>96,4ef</td>
<td>21,65d</td>
<td>6,59f</td>
<td>5,38d</td>
</tr>
<tr>
<td></td>
<td>P3</td>
<td>317,2d</td>
<td>107,9f</td>
<td>97,9de</td>
<td>22,18d</td>
<td>6,89de</td>
<td>5,46d</td>
</tr>
<tr>
<td></td>
<td>P4</td>
<td>333,6b</td>
<td>108,9ef</td>
<td>101,6bc</td>
<td>22,83d</td>
<td>7,74bc</td>
<td>6,05b</td>
</tr>
<tr>
<td></td>
<td>P5</td>
<td>338,8a</td>
<td>111,8de</td>
<td>104,1a</td>
<td>23,02ab</td>
<td>8,11a</td>
<td>6,27a</td>
</tr>
<tr>
<td>P6</td>
<td>P1 (Control)</td>
<td>301,1g</td>
<td>114,1cd</td>
<td>94,1g</td>
<td>21,94d</td>
<td>6,22g</td>
<td>4,81e</td>
</tr>
<tr>
<td></td>
<td>P2</td>
<td>306,2ef</td>
<td>116,4bc</td>
<td>98,6de</td>
<td>22,35bcd</td>
<td>6,74de</td>
<td>5,54d</td>
</tr>
<tr>
<td></td>
<td>P3</td>
<td>309,3e</td>
<td>117,4abc</td>
<td>100,2cd</td>
<td>22,63bc</td>
<td>7,01d</td>
<td>5,78c</td>
</tr>
<tr>
<td></td>
<td>P4</td>
<td>316,3d</td>
<td>119,0ab</td>
<td>103,3ab</td>
<td>23,32a</td>
<td>7,62c</td>
<td>6,02ab</td>
</tr>
<tr>
<td></td>
<td>P5</td>
<td>321,9a</td>
<td>121,1a</td>
<td>105,4a</td>
<td>23,52a</td>
<td>7,98ab</td>
<td>6,11ab</td>
</tr>
<tr>
<td>LSD₀.₀₅</td>
<td></td>
<td>3,8</td>
<td>3,6</td>
<td>3,0</td>
<td>0,82</td>
<td>0,37</td>
<td>0,22</td>
</tr>
</tbody>
</table>

2. Zone of irrigation water (Bo Trach district)

<table>
<thead>
<tr>
<th>Variety</th>
<th>Fertilizer</th>
<th>Number of panicles/m²</th>
<th>Number of seeds/panicles</th>
<th>Number of seeds fine/panicles</th>
<th>1000 seed weight (gram)</th>
<th>Productivity Theory (tons/ha)</th>
<th>Productivity Paddy (tons/ha)</th>
</tr>
</thead>
<tbody>
<tr>
<td>HT1</td>
<td>P1 (Control)</td>
<td>275,9d</td>
<td>103,8e</td>
<td>90,4g</td>
<td>21,67e</td>
<td>5,40f</td>
<td>4,41e</td>
</tr>
<tr>
<td></td>
<td>P2</td>
<td>288,9e</td>
<td>104,7e</td>
<td>92,8efg</td>
<td>22,51bcd</td>
<td>6,04de</td>
<td>5,22d</td>
</tr>
<tr>
<td></td>
<td>P3</td>
<td>293,2e</td>
<td>108,1d</td>
<td>95,1de</td>
<td>21,83de</td>
<td>6,01d</td>
<td>5,31cd</td>
</tr>
<tr>
<td></td>
<td>P4</td>
<td>301,7ab</td>
<td>111,2c</td>
<td>99,3bc</td>
<td>22,09dce</td>
<td>6,62c</td>
<td>5,48b</td>
</tr>
<tr>
<td></td>
<td>P5</td>
<td>303,7a</td>
<td>111,9bc</td>
<td>101,1ab</td>
<td>22,65abc</td>
<td>6,95ab</td>
<td>5,75a</td>
</tr>
<tr>
<td>P6</td>
<td>P1 (Control)</td>
<td>274,3d</td>
<td>111,2c</td>
<td>91,6g</td>
<td>22,95ab</td>
<td>5,77c</td>
<td>4,55e</td>
</tr>
<tr>
<td></td>
<td>P2</td>
<td>279,7d</td>
<td>112,6bc</td>
<td>95,3de</td>
<td>23,08ab</td>
<td>6,16d</td>
<td>5,21d</td>
</tr>
<tr>
<td></td>
<td>P3</td>
<td>281,2d</td>
<td>114,8b</td>
<td>97,1cd</td>
<td>23,12ab</td>
<td>6,40d</td>
<td>5,33bcd</td>
</tr>
<tr>
<td></td>
<td>P4</td>
<td>290,6e</td>
<td>118,7a</td>
<td>100,5ab</td>
<td>23,27ab</td>
<td>6,79bc</td>
<td>5,41bc</td>
</tr>
<tr>
<td></td>
<td>P5</td>
<td>295,4abc</td>
<td>119,0a</td>
<td>103,1a</td>
<td>23,35a</td>
<td>7,11a</td>
<td>5,78a</td>
</tr>
<tr>
<td>LSD₀.₀₅</td>
<td></td>
<td>7,1</td>
<td>2,9</td>
<td>3,8</td>
<td>0,81</td>
<td>0,27</td>
<td>0,16</td>
</tr>
</tbody>
</table>

Note: Different letters in the same column represent a significant difference of 0.05.

The table 3.7 shows that: Active watering area continues to show superiority compared to non-active areas of irrigation water in terms of productivity. The productivity of P4, P5 in irrigation water (100 kg N + 45 - 60 kg P₂O₅ + 60 - 80 kg K₂O
Fertilizing with 80 kg N + 45 kg P₂O₅ + 60 kg K₂O + 10 tons of manure/ha (or 01 ton of organic fertilizer per hectare) in two active areas and not actively watering contribute to improve the calculation. Soil chemistry is an important basis for improving soil fertility and fertility.
3.2.4. Effects of fertilizer complex on economic efficiency of two HT1 and P6 quality rice varieties

Table 3.9. Economic efficiency of fertilizer formulas for two quality rice varieties

<table>
<thead>
<tr>
<th>Fertilizer</th>
<th>Winter - spring season 2013 - 2014</th>
<th>Summer - autumn season 2014</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Variety HT1</td>
<td>Value cost ratio</td>
</tr>
<tr>
<td></td>
<td>Profit (1000 vnd/ha)</td>
<td></td>
</tr>
<tr>
<td>P1 (Control)</td>
<td>18.719,5</td>
<td>2,27</td>
</tr>
<tr>
<td>P2</td>
<td>19.569,5</td>
<td>2,19</td>
</tr>
<tr>
<td>P3</td>
<td>20.054,5</td>
<td>2,17</td>
</tr>
<tr>
<td>P4</td>
<td>23.912,1</td>
<td>2,37</td>
</tr>
<tr>
<td>P5</td>
<td>23.751,1</td>
<td>2,25</td>
</tr>
</tbody>
</table>

1. Active zone for irrigation (Quang Ninh district)

2. Zone of irrigation water (Bo Trach district)

In irrigated areas, irrigation water: In the winter - spring season 2013 - 2014 and summer - autumn season 2014, Value cost ratio values were high, from 2,17 to 2,58 and reached the highest in P4 formula in 2 experimental varieties. The economic efficiency belongs to the formula P4 fertilizer. In the irrigation zone of irrigation water: P4 fertilizer formula, although the Value cost ratio is high but profit lower than fertilizer formula P5, P5 formula Value cost ratio is quite high from 1,74 to 1,80, the productivity is higher than Formula P4 and the rest of the formula, so the advantage of economic efficiency belongs to formula P5.
3.2.5. Effects of fertilizer combinations on some quality indicators of two HT1 and P6 quality rice varieties

Table 3.10. Effects of fertilizer combinations on some indicators of rice quality in active and non-active areas of irrigation water

<table>
<thead>
<tr>
<th>Variety</th>
<th>Targets</th>
<th>Fertilizer</th>
<th>The rate of milled rice (%)</th>
<th>Rate of milled rice (%)</th>
<th>Head rice yield (%)</th>
<th>Amylose (%)</th>
<th>Protein (%)</th>
<th>Quality food (point)</th>
</tr>
</thead>
<tbody>
<tr>
<td>HT1 (Control)</td>
<td></td>
<td>P1 (Control)</td>
<td>80,10<sup>c</sup></td>
<td>71,20<sup>d</sup></td>
<td>79,30<sup>e</sup></td>
<td>17,91<sup>c</sup></td>
<td>7,15<sup>f</sup></td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>P2</td>
<td>85,30<sup>ab</sup></td>
<td>73,40<sup>cde</sup></td>
<td>82,60<sup>cd</sup></td>
<td>17,85<sup>c</sup></td>
<td>7,21<sup>f</sup></td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>P3</td>
<td>85,70<sup>ab</sup></td>
<td>77,30<sup>cde</sup></td>
<td>83,50<sup>bcd</sup></td>
<td>17,88<sup>c</sup></td>
<td>7,25<sup>ef</sup></td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>P4</td>
<td>85,50<sup>ab</sup></td>
<td>76,10<sup>b</sup></td>
<td>84,10<sup>abcd</sup></td>
<td>17,73<sup>c</sup></td>
<td>7,54<sup>de</sup></td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>P5</td>
<td>86,40<sup>ab</sup></td>
<td>78,30<sup>b</sup></td>
<td>84,60<sup>abc</sup></td>
<td>17,71<sup>c</sup></td>
<td>7,72<sup>d</sup></td>
<td>2</td>
</tr>
<tr>
<td>P6</td>
<td></td>
<td>P1 (Control)</td>
<td>83,20<sup>bc</sup></td>
<td>72,30<sup>d</sup></td>
<td>81,30<sup>de</sup></td>
<td>21,87<sup>a</sup></td>
<td>10,20<sup>c</sup></td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>P2</td>
<td>87,30<sup>ab</sup></td>
<td>75,40<sup>b</sup></td>
<td>83,10<sup>cd</sup></td>
<td>21,65<sup>a</sup></td>
<td>10,72<sup>b</sup></td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>P3</td>
<td>83,90<sup>a</sup></td>
<td>77,60<sup>b</sup></td>
<td>84,20<sup>abc</sup></td>
<td>21,67<sup>a</sup></td>
<td>10,84<sup>ab</sup></td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>P4</td>
<td>89,30<sup>a</sup></td>
<td>81,20<sup>a</sup></td>
<td>86,60<sup>abc</sup></td>
<td>21,15<sup>b</sup></td>
<td>10,95<sup>ab</sup></td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>P5</td>
<td>89,90<sup>a</sup></td>
<td>81,80<sup>a</sup></td>
<td>86,90<sup>a</sup></td>
<td>21,03<sup>b</sup></td>
<td>11,07<sup>a</sup></td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>LSD<sub>0.05</sub></td>
<td></td>
<td>5,30</td>
<td>3,39</td>
<td>3,29</td>
<td>0,83</td>
<td>0,40</td>
<td></td>
</tr>
</tbody>
</table>

2. Zone of irrigation water (Bo Trach district)

<table>
<thead>
<tr>
<th>Variety</th>
<th>Targets</th>
<th>Fertilizer</th>
<th>The rate of milled rice (%)</th>
<th>Rate of milled rice (%)</th>
<th>Head rice yield (%)</th>
<th>Amylose (%)</th>
<th>Protein (%)</th>
<th>Quality food (point)</th>
</tr>
</thead>
<tbody>
<tr>
<td>HT1 (Control)</td>
<td></td>
<td>P1 (Control)</td>
<td>79,30<sup>c</sup></td>
<td>70,40<sup>e</sup></td>
<td>76,20<sup>c</sup></td>
<td>17,71<sup>de</sup></td>
<td>6,85<sup>e</sup></td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>P2</td>
<td>83,40<sup>abc</sup></td>
<td>71,60<sup>de</sup></td>
<td>80,80<sup>ab</sup></td>
<td>17,77<sup>d</sup></td>
<td>6,91<sup>de</sup></td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>P3</td>
<td>83,90<sup>abc</sup></td>
<td>72,80<sup>bc</sup></td>
<td>81,20<sup>ab</sup></td>
<td>17,73<sup>d</sup></td>
<td>7,14<sup>de</sup></td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>P4</td>
<td>85,50<sup>ab</sup></td>
<td>74,20<sup>abcd</sup></td>
<td>82,70<sup>ab</sup></td>
<td>17,45<sup>de</sup></td>
<td>7,23<sup>de</sup></td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>P5</td>
<td>85,80<sup>ab</sup></td>
<td>75,80<sup>bc</sup></td>
<td>82,50<sup>ab</sup></td>
<td>17,61<sup>de</sup></td>
<td>7,35<sup>d</sup></td>
<td>2</td>
</tr>
<tr>
<td>P6</td>
<td></td>
<td>P1 (Control)</td>
<td>81,50<sup>bc</sup></td>
<td>73,20<sup>cde</sup></td>
<td>79,50<sup>bc</sup></td>
<td>21,15<sup>c</sup></td>
<td>10,21<sup>c</sup></td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>P2</td>
<td>84,60<sup>ab</sup></td>
<td>75,10<sup>bc</sup></td>
<td>80,10<sup>bc</sup></td>
<td>20,98<sup>c</sup></td>
<td>10,43<sup>bc</sup></td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>P3</td>
<td>85,70<sup>ab</sup></td>
<td>75,40<sup>bc</sup></td>
<td>81,80<sup>ab</sup></td>
<td>21,95<sup>a</sup></td>
<td>10,62<sup>abc</sup></td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>P4</td>
<td>87,20<sup>a</sup></td>
<td>77,20<sup>ab</sup></td>
<td>83,50<sup>a</sup></td>
<td>21,65<sup>b</sup></td>
<td>10,87<sup>ab</sup></td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>P5</td>
<td>87,80<sup>a</sup></td>
<td>79,30<sup>a</sup></td>
<td>83,80<sup>a</sup></td>
<td>21,67<sup>b</sup></td>
<td>10,94<sup>a</sup></td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>LSD<sub>0.05</sub></td>
<td></td>
<td>4,48</td>
<td>3,08</td>
<td>4,91</td>
<td>0,61</td>
<td>0,52</td>
<td></td>
</tr>
</tbody>
</table>

Note: Different letters in the same column represent a significant difference of 0.05.

Rice quality is a genetic determinant of major decision varieties, but fertilizer formulas affect the quality of rice under system of rice intensification conditions, organic fertilizer formulas (microbial organic fertilizers) Cane and manure improve the quality of milling, nutritional quality and quality of two quality rice varieties in the active and non-active areas. The advantage lies in the formula P5 fertilizer, followed by formula P4 fertilizer.

Summary 2: Fertilizer formulas affect the growth development criteria, yield, rice quality and soil chemical properties. In terms of growth, growth and productivity, fertilizer formula P5 (80 kg N + 45 kg P₂O₅ + 60 kg K₂O + 500 kg lime + 10 tons manure/ha gives the highest yield in In both areas and 2 crops of the next two cultivars, P4 fertilizer formula (80 kg N + 45 kg P₂O₅ + 60 kg K₂O + 500 kg lime + 01 ton Gianh River organic fertilizer/ha) In terms of economic efficiency, the P4
formula has the most profit and the Value cost ratio is the most profitable, and P5 has the highest profit and Value cost ratio. These fertilizers have good quality of rice such as protein content, quality of cooking, better quality of milling, and significantly improve soil properties including pH_{KCl}, OC, N, P$_2$O$_5$, K$_2$O.

3.3. IMPROVEMENT OF WATER REGIME TO TWO QUALITY RICE VARIETIES HT1 AND P6 ACCORDING TO THE IMPROVEMENT SYSTEM OF SRI RICE IN WATER REGION

3.3.1. Influence of irrigation regime on yield and yield components of two HT1 and P6 quality rice varieties

Table 3.11. Effect of irrigation regime on yield and yield components of two quality rice varieties

<table>
<thead>
<tr>
<th>Variety</th>
<th>Watering mode</th>
<th>Number of panicles/m2</th>
<th>Number of seeds/panicles</th>
<th>Number of seeds fine/panicles</th>
<th>1000 seed weight (gram)</th>
<th>Productivity Theory (tons/ha)</th>
<th>Productivity Paddy (tons/ha)</th>
</tr>
</thead>
<tbody>
<tr>
<td>HT1 (Control)</td>
<td>T1 (Control)</td>
<td>261,4d</td>
<td>103,4c</td>
<td>88,8b</td>
<td>22,14b</td>
<td>5,14c</td>
<td>4,74c</td>
</tr>
<tr>
<td></td>
<td>T2</td>
<td>305,7c</td>
<td>109,3bc</td>
<td>94,9ab</td>
<td>22,87a</td>
<td>6,63b</td>
<td>5,33b</td>
</tr>
<tr>
<td>P6</td>
<td>T1 (Control)</td>
<td>282,6b</td>
<td>107,3ab</td>
<td>91,6ab</td>
<td>22,65ab</td>
<td>5,86c</td>
<td>5,51b</td>
</tr>
<tr>
<td></td>
<td>T2</td>
<td>323,8a</td>
<td>117,3a</td>
<td>99,4a</td>
<td>23,18a</td>
<td>7,46a</td>
<td>6,44a</td>
</tr>
<tr>
<td>LSD$^{0.05}$</td>
<td>6,5</td>
<td>8,9</td>
<td>8,8</td>
<td>0,71</td>
<td>0,75</td>
<td>0,40</td>
<td></td>
</tr>
</tbody>
</table>

2. Summer - autumn season 2014

Note: Different letters in the same column represent a significant difference of 0.05.

In the winter - spring season 2013 - 2014 as well as in the summer - autumn season 2014, between T1 watering and T2 watering regime, T2 formula is superior, with Productivity Theory and Productivity Paddy higher than T1 formula. In the winter - spring season 2013 - 2014, the P6 variety is superior to HT1 in terms of cotton/m2. In the summer-autumn crop, HT1 has the advantage over P6 in a watering regime. The dry intermittent dry irrigation (T2) is more productive than regular flooded irrigation (T1).
3.3.2. Effect of irrigation regime on economic efficiency of two HT1 and P6 quality rice varieties

Table 3.12. Economic efficiency of watering regime on two quality rice varieties

<table>
<thead>
<tr>
<th>Variety</th>
<th>Watering mode</th>
<th>Winter - spring season 2013 - 2014</th>
<th>Summer - autumn season 2014</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Total revenue (1000 vnd/ha)</td>
<td>Total expenditure (1000 vnd/ha)</td>
</tr>
<tr>
<td>HT1 (Control)</td>
<td>T1 (Control)</td>
<td>30.810,0</td>
<td>16.310,5</td>
</tr>
<tr>
<td></td>
<td>T2</td>
<td>35.815,0</td>
<td>16.050,5</td>
</tr>
<tr>
<td>P6</td>
<td>T1 (Control)</td>
<td>34.645,0</td>
<td>16.310,5</td>
</tr>
<tr>
<td></td>
<td>T2</td>
<td>41.866,5</td>
<td>16.050,5</td>
</tr>
</tbody>
</table>

* Winter - spring season 2013 – 2014

From the profitability, the economic efficiency on the T2 formula was higher than the T1 control formula on both varieties and 2 studies. Compared with the economic efficiency of T1 control formula, in the winter - spring season 2013 - 2014 T2 formula increased from 18,13% to 22,80%; in the summer - autumn season revenue increased by from 13,17 to 18,75%.

3.3.3. Influence of irrigation regime on the number of irrigation and total irrigation water of two HT1 and P6 quality cultivars

Table 3.13. Effect of irrigation regime on the number of irrigation and total irrigation water of two quality rice varieties winter - spring season 2013 - 2014 and summer - autumn season 2014

<table>
<thead>
<tr>
<th>Variety</th>
<th>Watering mode</th>
<th>Winter - spring season 2013 – 2014</th>
<th>Summer - autumn season 2014</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Irrigation times (times)</td>
<td>Total water of the whole season (m³/ha)</td>
</tr>
<tr>
<td>HT1 (Control)</td>
<td>T1 (Control)</td>
<td>14</td>
<td>4.219,5</td>
</tr>
<tr>
<td></td>
<td>T2</td>
<td>8</td>
<td>3.773,5</td>
</tr>
<tr>
<td>P6</td>
<td>T1 (Control)</td>
<td>16</td>
<td>4.509,0</td>
</tr>
<tr>
<td></td>
<td>T2</td>
<td>9</td>
<td>3.813,5</td>
</tr>
</tbody>
</table>
Table 3.13 shows that: T2 formula is less water-consuming than water-saving alternatives of dry wet irrigation compared to regular irrigation. In addition, the number of T2 treatments is less, so less input costs for production than the T1 formula.

Summary 3: Dry intermittent dry irrigation (T2) and regular irrigated watering (T1) under system of rice intensification have significantly impacted on growth development criteria, on root growth of two rice varieties quality. The most suitable irrigation regime is the T2 formula, which gives the effective branching ratio, the higher yield of the T1, and the advantage of saving irrigation water and irrigation.

3.4. RESULTS OF BUILDING RICE PRODUCTION MODEL

3.4.1. Productivity and productivity components

Table 3.14. Components of productivity and productivity of the model in the winter-spring season 2014 - 2015 and summer-autumn season 2015

<table>
<thead>
<tr>
<th>Recipe</th>
<th>Components of productivity</th>
<th>Productivity</th>
<th>Rate of increase in net yield compared to control (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Number of panicles/m²</td>
<td>Number of seeds fine/panicle</td>
<td>1000 seed weight (gram)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1. Winter - spring season 2014 – 2015</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.1. Active zone for irrigation (Quang Ninh district)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Control</td>
<td>305,8ᵇ</td>
<td>89,6ᵇ</td>
<td>22,38ᵇ</td>
</tr>
<tr>
<td>Model</td>
<td>325,2ᵃ</td>
<td>102,3ᵃ</td>
<td>23,72ᵃ</td>
</tr>
<tr>
<td>LSD₀.₀₅</td>
<td>5,5</td>
<td>9,2</td>
<td>0,28</td>
</tr>
<tr>
<td>1.2. Zone of irrigation water (Bo Trach district)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Control</td>
<td>269,7ᵇ</td>
<td>87,7ᵇ</td>
<td>22,29ᵇ</td>
</tr>
<tr>
<td>Model</td>
<td>298,3ᵃ</td>
<td>97,1ᵃ</td>
<td>23,55ᵃ</td>
</tr>
<tr>
<td>LSD₀.₀₅</td>
<td>2,5</td>
<td>3,1</td>
<td>0,33</td>
</tr>
<tr>
<td>2. Summer - autumn season 2015</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.1. Active zone for irrigation (Quang Ninh district)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Control</td>
<td>277,4ᵇ</td>
<td>92,6ᵇ</td>
<td>22,17ᵇ</td>
</tr>
<tr>
<td>Model</td>
<td>331,3ᵃ</td>
<td>103,5ᵃ</td>
<td>22,95ᵃ</td>
</tr>
<tr>
<td>LSD₀.₀₅</td>
<td>4,1</td>
<td>4,3</td>
<td>0,22</td>
</tr>
<tr>
<td>2.2. Zone of irrigation water (Bo Trach district)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Control</td>
<td>271,8ᵇ</td>
<td>91,3ᵇ</td>
<td>21,72ᵇ</td>
</tr>
<tr>
<td>Model</td>
<td>302,8ᵃ</td>
<td>97,9ᵃ</td>
<td>22,18ᵃ</td>
</tr>
<tr>
<td>LSD₀.₀₅</td>
<td>2,9</td>
<td>6,1</td>
<td>0,35</td>
</tr>
</tbody>
</table>

Note: Different letters in the same column represent a significant difference of 0.05.

Compound fertilizer 80 kg N + 45 kg P₂O₅ + 60 kg K₂O + 500 kg lime + 10 tons of manure/ha on the active area irrigation water and 80 kg N + 45 kg P₂O₅ + 60 kg K₂O + 500 kg lime + 01 ton of microorganic organic fertilizer/ha in the non-active area of irrigation water, cultivating in the direction of system of rice intensification have
higher productivity than the control of the people. The area of active water irrigation actually exceeds the yield of from 21,4 to 22,5% compared with the control. In the irrigated area, the model was from 21,1 to 23,6% higher than the control.

3.4.2. Economic efficiency of the production model:

The results of the study in Table 3.27 in the thesis show that profitability in the system of rice intensification production model increased compared with the control from 35,7% to 38,6%, the increase The profit from the control in the active area is much higher than in the non-active area, mainly due to the higher productivity in the irrigated area.

3.4.3. Emissions CH\(_4\), N\(_2\)O

Assessment of CH\(_4\) and N\(_2\)O emissions of total gaseous emissions in the winter - spring season 2014 - 2015 and summer - autumn season 2015 shows that:

In the winter - spring and summer - autumn seasons, the results showed that CH\(_4\) and N\(_2\)O emissions on the model were lower than the control, the CH\(_4\) gas in the model reached 77,55 g/m\(^2\), the N\(_2\)O gas on the model reached 0,73 g/m\(^2\), respectively, decreased by 11,97% and 13,09% respectively. The CO\(_2\) equivalent of global warming potential (GWP) in the model was 2155,3 g/m\(^2\), equivalent to 12,10% compared with the control. This suggests that system of rice intensification is a cultivation technique for reducing greenhouse gas emissions in rice production.

Table 3.15. Total CH\(_4\) and N\(_2\)O emissions in the winter - spring season 2014-2015 and summer – autumn season 2015

<table>
<thead>
<tr>
<th>Recipe</th>
<th>CH(_4)</th>
<th></th>
<th>N(_2)O</th>
<th></th>
<th>CO(_2) (GWP)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Total</td>
<td></td>
<td>Total</td>
<td></td>
<td>Increase, decrease compared with control (%)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Increase, decrease compared with control (%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td></td>
<td>Increase, decrease compared with control (%)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Increase, decrease compared with control (%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1. Winter - spring season 2014 – 2015</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Control</td>
<td>79,46(^a)</td>
<td>-</td>
<td>0,81(^a)</td>
<td>-</td>
<td>2226,9(^a)</td>
<td>-</td>
</tr>
<tr>
<td>Model</td>
<td>65,41(^b)</td>
<td>-17,68</td>
<td>0,66 (^b)</td>
<td>-18,52</td>
<td>1830,5(^b)</td>
<td>-17,81</td>
</tr>
<tr>
<td>LSD(_{0,05})</td>
<td>6,34</td>
<td></td>
<td>0,03</td>
<td></td>
<td>162,1</td>
<td></td>
</tr>
<tr>
<td>2. Summer - autumn season 2015</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Control</td>
<td>88,10(^a)</td>
<td>-</td>
<td>0,84(^a)</td>
<td>-</td>
<td>2451,9(^a)</td>
<td>-</td>
</tr>
<tr>
<td>Model</td>
<td>77,55(^b)</td>
<td>-11,97</td>
<td>0,73(^a)</td>
<td>-13,09</td>
<td>2155,3(^b)</td>
<td>-12,10</td>
</tr>
<tr>
<td>LSD(_{0,05})</td>
<td>4,16</td>
<td></td>
<td>0,11</td>
<td></td>
<td>89,7</td>
<td></td>
</tr>
</tbody>
</table>

Note: Different letters in the same column represent a significant difference of 0,05.

Conclusion of the rice production model: The results of the two rice production models in the winter - spring season 2014 - 2015 and summer - autumn 2015 show that the system of rice intensification production model yields higher results than the control in terms of productivity Reduce greenhouse gas emission, improve economic efficiency, specifically: productivity reached from 5,30 to 6,38 tons/ha, higher than the control from 19,6 to 23,6%, profit reached from 20.054.500
to 24,647,700 VND/ha, higher than the control from 30.4 to 38.6%, reduction of CH$_4$ emission from 11.97 to 17.68% and N$_2$O gas from 13.09 to 18.52%.

CHAPTER 4
CONCLUSION AND SUGGESTION

4.1. CONCLUSION

1. The research has identified the appropriate seed size for two HT1 and P6 rice varieties under SRI as follows: (i) 60 kg/ha in two winter-spring crops in two active and non-active zones; (ii) in summer-autumn crop is 40 kg/ha for HT1 and 60 kg/ha for P6 in irrigation water and 60 kg/ha for both HT1 and P6 in non-active zones. At this level of seed production, the yield and economic efficiency are highest.

2. Appropriate fertilizers in two winter-spring and summer-winter crops for the two highest quality and economical HT1 and SRI crops are as follows: (i) 80 kg N + 45 kg P$_2$O$_5$ + 60 kg K$_2$O + 500 kg lime + 01 ton Gianh River organic fertilizer per hectare; (ii) in non-active areas irrigation water is 80 kg N + 45 kg P$_2$O$_5$ + 60 kg K$_2$O + 500 kg lime + 10 tons manure/ha. In addition, the quality of rice and soil properties were also improved in these fertilizer formulas on both active and non-active areas of irrigation water.

3. Wet dry irrigation intermittently in irrigation watering areas yields higher productivity and economic efficiency than regular irrigated irrigation systems, saving irrigation water from 10.6 to 15.4% in the winter-spring crop and from 11.2% to 11.4% in the summer-autumn crop.

4. Successfully built two models of rice production in the irrigated area in An Ninh commune, Quang Ninh district and irrigation water in Dai Trach commune, Bo Trach district, Quang Binh province higher than the control from 19.6 to 22.5%, profit exceeded from 30.4% to 32.7% in the active area irrigation; The yield was higher than that of the control from 22.1 to 23.6%, and the profit exceeded that from 35.7 to 38.6% in the irrigated area. The CH$_4$ emissions from the production model decreased from 11.97 to 17.68% and N$_2$O emissions decreased from 13.09 to 18.52% compared with conventional cultivation.

4.2. SUGGESTION

1. The Department of Agriculture and Rural Development, Department of Agriculture and Rural Development, Department of Agriculture and Fishery Promotion of Quang Binh province, directed and promoted the model of demonstration on the application of farming techniques in the direction. SRI, continue to expand the area of rice cultivation towards system of rice intensification in the current period under the same conditions to improve productivity, increase the value of rice production for the population in particular and agricultural production generally.

2. Continuing research on a number of technical measures in system of rice intensification - based cropping systems on the productivity, quality and greenhouse gas emissions of other soils can lead to comprehensive conclusions than.